LlamaIndex 使用 RouterOutputAgentWorkflow

2024-09-06 12:12

本文主要是介绍LlamaIndex 使用 RouterOutputAgentWorkflow,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LlamaIndex 中提供了一个 RouterOutputAgentWorkflow 功能,可以集成多个 QueryTool,根据用户的输入判断使用那个 QueryEngine,在做查询的时候,可以从不同的数据源进行查询,例如确定的数据从数据库查询,如果是语义查询可以从向量数据库进行查询。本文将实现两个搜索引擎,根据不同 Query 使用不同 QueryEngine。

安装 MySQL 依赖

pip install mysql-connector-python  

搜索引擎

定义搜索引擎,初始两个数据源

  • 使用 MySQL 作为数据库的数据源
  • 使用 VectorIndex 作为语义搜索数据源
from pathlib import Path
from llama_index.core.tools import QueryEngineTool
from llama_index.core import VectorStoreIndex
import llm
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core import Settings
from llama_index.core import SQLDatabasefrom sqlalchemy import create_engine, MetaData, Table, Column, String, Integer, select
Settings.llm = llm.get_ollama("mistral-nemo")
Settings.embed_model = llm.get_ollama_embbeding()engine = create_engine('mysql+mysqlconnector://root:123456@localhost:13306/db_llama', echo=True  
)def init_db():# 初始化数据库metadata_obj = MetaData()table_name = "city_stats"city_stats_table = Table(table_name,metadata_obj,Column("city_name", String(16), primary_key=True),Column("population", Integer, ),Column("state", String(16), nullable=False),)metadata_obj.create_all(engine)sql_database = SQLDatabase(engine, include_tables=["city_stats"])from sqlalchemy import insertrows = [{"city_name": "New York City", "population": 8336000, "state": "New York"},{"city_name": "Los Angeles", "population": 3822000, "state": "California"},{"city_name": "Chicago", "population": 2665000, "state": "Illinois"},{"city_name": "Houston", "population": 2303000, "state": "Texas"},{"city_name": "Miami", "population": 449514, "state": "Florida"},{"city_name": "Seattle", "population": 749256, "state": "Washington"},]for row in rows:stmt = insert(city_stats_table).values(**row)with engine.begin() as connection:cursor = connection.execute(stmt)from llama_index.core.query_engine import NLSQLTableQueryEnginesql_database = SQLDatabase(engine, include_tables=["city_stats"])
sql_query_engine = NLSQLTableQueryEngine(sql_database=sql_database,tables=["city_stats"]
)def get_doc_index()-> VectorStoreIndex:'''解析 words'''# 创建 OllamaEmbedding 实例,用于指定嵌入模型和服务的基本 URLollama_embedding = llm.get_ollama_embbeding()# 读取 "./data" 目录中的数据并加载为文档对象documents = SimpleDirectoryReader(input_files=[Path(__file__).parent / "data" / "LA.pdf"]).load_data()# 从文档中创建 VectorStoreIndex,并使用 OllamaEmbedding 作为嵌入模型vector_index = VectorStoreIndex.from_documents(documents, embed_model=ollama_embedding, transformations=[SentenceSplitter(chunk_size=1000, chunk_overlap=20)],)vector_index.set_index_id("vector_index")  # 设置索引 IDvector_index.storage_context.persist("./storage")  # 将索引持久化到 "./storage"return vector_indexllama_index_query_engine = get_doc_index().as_query_engine()sql_tool = QueryEngineTool.from_defaults(query_engine=sql_query_engine,description=("Useful for translating a natural language query into a SQL query over"" a table containing: city_stats, containing the population/state of"" each city located in the USA."),name="sql_tool"
)llama_cloud_tool = QueryEngineTool.from_defaults(query_engine=llama_index_query_engine,description=(f"Useful for answering semantic questions about certain cities in the US."),name="llama_cloud_tool"
)

创建工作流

下图中显示了工作流的节点,绿色背景节点是工作流的动作,例如大模型返回 ToolEvent,ToolEvent 节点执行并返回结果。
在这里插入图片描述
工作流定义代码:

from typing import Dict, List, Any, Optionalfrom llama_index.core.tools import BaseTool
from llama_index.core.llms import ChatMessage
from llama_index.core.llms.llm import ToolSelection, LLM
from llama_index.core.workflow import (Workflow,Event,StartEvent,StopEvent,step,Context
)
from llama_index.core.base.response.schema import Response
from llama_index.core.tools import FunctionTool
from llama_index.utils.workflow import draw_all_possible_flows
from llm import get_ollamafrom docs import enable_traceenable_trace()class InputEvent(Event):"""Input event."""class GatherToolsEvent(Event):"""Gather Tools Event"""tool_calls: Anyclass ToolCallEvent(Event):"""Tool Call event"""tool_call: ToolSelectionclass ToolCallEventResult(Event):"""Tool call event result."""msg: ChatMessageclass RouterOutputAgentWorkflow(Workflow):"""Custom router output agent workflow."""def __init__(self,tools: List[BaseTool],timeout: Optional[float] = 10.0,disable_validation: bool = False,verbose: bool = False,llm: Optional[LLM] = None,chat_history: Optional[List[ChatMessage]] = None,):"""Constructor."""super().__init__(timeout=timeout, disable_validation=disable_validation, verbose=verbose)self.tools: List[BaseTool] = toolsself.tools_dict: Optional[Dict[str, BaseTool]] = {tool.metadata.name: tool for tool in self.tools}self.llm: LLM = llmself.chat_history: List[ChatMessage] = chat_history or []def reset(self) -> None:"""Resets Chat History"""self.chat_history = []@step()async def prepare_chat(self, ev: StartEvent) -> InputEvent:message = ev.get("message")if message is None:raise ValueError("'message' field is required.")# add msg to chat historychat_history = self.chat_historychat_history.append(ChatMessage(role="user", content=message))return InputEvent()@step()async def chat(self, ev: InputEvent) -> GatherToolsEvent | StopEvent:"""Appends msg to chat history, then gets tool calls."""# Put msg into LLM with tools includedchat_res = await self.llm.achat_with_tools(self.tools,chat_history=self.chat_history,verbose=self._verbose,allow_parallel_tool_calls=True)tool_calls = self.llm.get_tool_calls_from_response(chat_res, error_on_no_tool_call=False)ai_message = chat_res.messageself.chat_history.append(ai_message)if self._verbose:print(f"Chat message: {ai_message.content}")# no tool calls, return chat message.if not tool_calls:return StopEvent(result=ai_message.content)return GatherToolsEvent(tool_calls=tool_calls)@step(pass_context=True)async def dispatch_calls(self, ctx: Context, ev: GatherToolsEvent) -> ToolCallEvent:"""Dispatches calls."""tool_calls = ev.tool_callsawait ctx.set("num_tool_calls", len(tool_calls))# trigger tool call eventsfor tool_call in tool_calls:ctx.send_event(ToolCallEvent(tool_call=tool_call))return None@step()async def call_tool(self, ev: ToolCallEvent) -> ToolCallEventResult:"""Calls tool."""tool_call = ev.tool_call# get tool ID and function callid_ = tool_call.tool_idif self._verbose:print(f"Calling function {tool_call.tool_name} with msg {tool_call.tool_kwargs}")# call function and put result into a chat messagetool = self.tools_dict[tool_call.tool_name]output = await tool.acall(**tool_call.tool_kwargs)msg = ChatMessage(name=tool_call.tool_name,content=str(output),role="tool",additional_kwargs={"tool_call_id": id_,"name": tool_call.tool_name})return ToolCallEventResult(msg=msg)@step(pass_context=True)async def gather(self, ctx: Context, ev: ToolCallEventResult) -> StopEvent | None:"""Gathers tool calls."""# wait for all tool call events to finish.tool_events = ctx.collect_events(ev, [ToolCallEventResult] * await ctx.get("num_tool_calls"))if not tool_events:return Nonefor tool_event in tool_events:# append tool call chat messages to historyself.chat_history.append(tool_event.msg)# # after all tool calls finish, pass input event back, restart agent loopreturn InputEvent()from muti_agent import sql_tool, llama_cloud_tool
wf = RouterOutputAgentWorkflow(tools=[sql_tool, llama_cloud_tool], verbose=True, timeout=120, llm=get_ollama("mistral-nemo"))async def main():result = await wf.run(message="Which city has the highest population?")print("RSULT ===============", result)# if __name__ == "__main__":
#     import asyncio#     asyncio.run(main())import gradio as grasync def random_response(message, history):wf.reset()result = await wf.run(message=message)print("RSULT ===============", result)return resultdemo = gr.ChatInterface(random_response, clear_btn=None, title="Qwen2")demo.launch()

输入问题是 “What are five popular travel spots in Los Angeles?”,自动路由到 VectorIndex 进行查询。
在这里插入图片描述
输入问题为 “which city has the most population” 时,调用数据库进行搜索。
在这里插入图片描述

总结

LlamaIndex 中搜索引擎自动路由,根据用户的输入型自动选择所需的搜索引擎,这里有一个需要注意的点,模型需要支持 Function Call。如果 Ollama 本地模型进行推理,不是所有的本地模型都支持Function Call,Llama3.1 和 mistral-nemo 是支持 Function Call 的,可以使用。

这篇关于LlamaIndex 使用 RouterOutputAgentWorkflow的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141971

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机