pyspark.sql.types

2024-09-06 10:36
文章标签 sql pyspark database types

本文主要是介绍pyspark.sql.types,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

示例:

from datetime import datetime, date
from decimal import Decimal
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, FloatType, ArrayType, BooleanType, \DateType, TimestampType, DecimalType, MapType# 初始化 SparkSession 对象
spark = SparkSession.builder \.appName("Example PySpark Script with Advanced Data Types") \.getOrCreate()# 定义数据结构
schema = StructType([StructField("name", StringType(), True),StructField("age", IntegerType(), True),StructField("weight", FloatType(), True),StructField("interests", ArrayType(StringType()), True),StructField("has_license", BooleanType(), True),StructField("birthday", DateType(), True),StructField("last_checkup", TimestampType(), True),StructField("balance", DecimalType(precision=10, scale=2), True),StructField("preferences", MapType(StringType(), StringType()), True)
])# 创建数据
data = [("Alice",34,65.5,["reading", "swimming"],True,date(1990, 1, 1),datetime(2023, 1, 1, 10, 0, 0),Decimal('12345.67'),{"theme": "dark", "language": "en"}),("Bob",45,80.2,["gaming", "traveling"],False,date(1979, 5, 15),datetime(2023, 5, 15, 12, 0, 0),Decimal('54321.01'),{"theme": "light", "language": "fr"}),("Cathy",29,55.0,["cooking", "painting"],True,date(1995, 8, 20),datetime(2023, 8, 20, 14, 0, 0),Decimal('7890.12'),{"theme": "dark", "language": "zh"})
]# 创建 DataFrame
df = spark.createDataFrame(data=data, schema=schema)# 查看 DataFrame 结构
df.printSchema()# 显示 DataFrame 内容
df.show(truncate=False)# 关闭 SparkSession
spark.stop()
root|-- name: string (nullable = true)|-- age: integer (nullable = true)|-- weight: float (nullable = true)|-- interests: array (nullable = true)|    |-- element: string (containsNull = true)|-- has_license: boolean (nullable = true)|-- birthday: date (nullable = true)|-- last_checkup: timestamp (nullable = true)|-- balance: decimal(10,2) (nullable = true)|-- preferences: map (nullable = true)|    |-- key: string|    |-- value: string (valueContainsNull = true)+-----+---+------+-------------------+-----------+----------+-------------------+--------+--------------------------------+
|name |age|weight|interests          |has_license|birthday  |last_checkup       |balance |preferences                     |
+-----+---+------+-------------------+-----------+----------+-------------------+--------+--------------------------------+
|Alice|34 |65.5  |[reading, swimming]|true       |1990-01-01|2023-01-01 10:00:00|12345.67|{language -> en, theme -> dark} |
|Bob  |45 |80.2  |[gaming, traveling]|false      |1979-05-15|2023-05-15 12:00:00|54321.01|{language -> fr, theme -> light}|
|Cathy|29 |55.0  |[cooking, painting]|true       |1995-08-20|2023-08-20 14:00:00|7890.12 |{language -> zh, theme -> dark} |
+-----+---+------+-------------------+-----------+----------+-------------------+--------+--------------------------------+
  1. 导入必要的模块

    • 从 pyspark.sql 导入 SparkSession
    • 从 pyspark.sql.functions 导入 to_dateto_timestamp
    • 从 pyspark.sql.types 导入 StructTypeStructFieldStringTypeIntegerTypeFloatTypeArrayTypeBooleanTypeDateTypeTimestampTypeDecimalTypeMapType
    • 从 decimal 模块导入 Decimal 类。
    • 从 datetime 模块导入 datetimedate 类。
  2. 初始化 SparkSession 对象

    • 创建一个名为 "Example PySpark Script with Advanced Data Types" 的 SparkSession。
  3. 定义数据结构

    • 使用 StructType 定义整个 DataFrame 的结构。
    • 包括姓名(字符串)、年龄(整数)、体重(浮点数)、兴趣爱好(数组)、是否有驾照(布尔值)、生日(日期)、最近一次体检时间(时间戳)、银行账户余额(十进制数)和偏好设置(映射)。
  4. 创建数据

    • 创建一个包含示例数据的列表 data,并将日期和时间戳类型的字符串转换为 date 和 datetime 对象。
  5. 创建 DataFrame

    • 使用 spark.createDataFrame 方法创建 DataFrame,并指定其结构。
  6. 查看 DataFrame 结构

    • 使用 df.printSchema() 查看 DataFrame 的结构。
  7. 显示 DataFrame 内容

    • 使用 df.show(truncate=False) 显示 DataFrame 的内容。

这篇关于pyspark.sql.types的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141787

相关文章

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX