dp练习【4】

2024-09-06 09:52
文章标签 dp 练习

本文主要是介绍dp练习【4】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长数对链 

646. 最长数对链

给你一个由 n 个数对组成的数对数组 pairs ,其中 pairs[i] = [lefti, righti] 且 lefti < righti 。

现在,我们定义一种 跟随 关系,当且仅当 b < c 时,数对 p2 = [c, d] 才可以跟在 p1 = [a, b] 后面。我们用这种形式来构造 数对链 。

找出并返回能够形成的 最长数对链的长度 。

你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

示例 1:

输入:pairs = [[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4] 。

示例 2:

输入:pairs = [[1,2],[7,8],[4,5]]
输出:3
解释:最长的数对链是 [1,2] -> [4,5] -> [7,8] 。
class Solution {public int findLongestChain(int[][] pairs) {int n = pairs.length;Arrays.sort(pairs, (a, b) -> a[0] - b[0]);int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {if (pairs[i][0] > pairs[j][1]) {// 通过i位置与前面所有的比较,然后得到当前时候最多有多少对(j到i之间最大对数)dp[i] = Math.max(dp[i], dp[j] + 1);}}}return dp[n - 1];}
}

最长定差子序列

1218. 最长定差子序列

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。

这个题目不能用常规dp来做,会超时,比如说这样,就超时了

class Solution {public int longestSubsequence(int[] arr, int difference) {int n = arr.length;int[] dp = new int[n + 1];Arrays.fill(dp, 1);int maxLen = 1;for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxLen = Math.max(maxLen,dp[i]);}return maxLen;}
}

 

要用哈希表来存储之前最长的重复子数组才行

class Solution {// 方法用于计算数组 arr 中具有固定差值 difference 的最长子序列长度public int longestSubsequence(int[] arr, int difference) {int ans = 0; // 初始化最长子序列的长度为 0// 创建一个大小为 40001 的整型数组 dp,用于存储动态规划的状态// 数组大小的选择是为了适应输入数据的变化范围,假设输入数据范围在 [-20000, 19999] 内int[] dp = new int[40001];// 遍历数组 arr 的每一个元素for (int num : arr) {// 为了使数组下标非负,将当前数字 num 偏移 20000 后使用作为 dp 数组的索引// dp[num + 20000] 存储了以 num 结尾的具有固定差值 difference 的最长子序列长度// dp[num + 20000 - difference] 则是前一个元素 (num - difference) 的最长子序列长度// 当前元素 num 的最长子序列长度为前一个元素的长度加 1dp[num + 20000] = dp[num + 20000 - difference] + 1;// 更新全局最长子序列长度 ans// 取当前已知的最长子序列长度和 dp[num + 20000] 中较大的值ans = Math.max(ans, dp[num + 20000]);}// 返回最长子序列的长度return ans;}
}

最长等差数列

1027. 最长等差数列

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
class Solution {// 方法接收一个整数数组 nums 作为参数public int longestArithSeqLength(int[] nums) {int n = nums.length; // 获取数组长度// 创建一个二维数组 dp,大小为 [n][1001],用于存储动态规划的结果int[][] dp = new int[n][1001];int maxLen = 0; // 初始化最长等差数列的长度为0// 从第二个元素开始遍历数组for (int k = 1; k < n; k++) {// 从第一个元素到第k-1个元素遍历for (int j = 0; j < k; j++) {// 计算两数之差,并加上500以保证下标非负// 这里假设差值的范围是 [-500, 500],因此差值加上500后可以作为下标int d = nums[k] - nums[j] + 500;// 根据差值 d 更新 dp[k][d] 的值,即以 nums[k] 结尾且差值为 d 的等差数列的长度// dp[j][d] 表示以 nums[j] 结尾且差值为 d 的等差数列的长度// 加1是因为当前元素 nums[k] 可以与前面的等差数列形成新的等差数列dp[k][d] = dp[j][d] + 1;// 更新最长等差数列的长度maxLen = Math.max(maxLen, dp[k][d]);}}// 最终返回最长等差数列的长度,由于 dp 数组中存储的是除第一个元素外的等差数列长度,所以需要加1return maxLen + 1;}
}

腾讯面试时的算法题目

牛客上看面经,看到有人写的,在面试之后,面试官出的两道dp。自己尝试了一下,发现难度还好,属于动态规划系列中【最长递增子序列】分类和【动态规划在字符串的应用】分类中类似的题型

最长重复子数组

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100
class Solution {public int longestArithSeqLength(int[] nums) {int n=nums.length;int[][] dp=new int[n][1001];int maxLen=0;//保存结果for(int k=1;k<n;k++){for(int j=0;j<k;j++){int d=nums[k]-nums[j]+500;//统一加偏移量,使下标非负dp[k][d]=dp[j][d]+1; //根据 d 去填充dp[k][d]maxLen=Math.max(maxLen,dp[k][d]);//维护最大值}}return maxLen+1;}
}

最长公共子序列

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 
class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length();int n = text2.length();int[][] dp = new int[n + 1][m + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (text1.charAt(j - 1) == text2.charAt(i - 1)) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);}}}return dp[n][m];}
}

 

每日一题

3174. 清除数字

给你一个字符串 s 。

你的任务是重复以下操作删除 所有 数字字符:

  • 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。

请你返回删除所有数字字符以后剩下的字符串。

示例 1:

输入:s = "abc"

输出:"abc"

解释:

字符串中没有数字。

示例 2:

输入:s = "cb34"

输出:""

解释:

一开始,我们对 s[2] 执行操作,s 变为 "c4" 。

然后对 s[1] 执行操作,s 变为 "" 。

用栈的思想解题:

class Solution {public String clearDigits(String s) {StringBuilder res = new StringBuilder();for (char c : s.toCharArray()){if (Character.isDigit(c)) {res.deleteCharAt(res.length() - 1);} else {res.append(c);}}return res.toString();}
}

这篇关于dp练习【4】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141691

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int