【2024数模国赛赛题思路公开】国赛E题思路丨附可运行代码丨无偿自提

2024-09-06 08:12

本文主要是介绍【2024数模国赛赛题思路公开】国赛E题思路丨附可运行代码丨无偿自提,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024年国赛E题解题思路

问题一

【题目分析】

  • 任务是将一天分成若干时段,根据经中路-纬中路交叉口的车流量差异,估计每个时段各个相位的车流量。

思路:

  1. 数据处理与预处理: 根据附件2的数据,提取经中路-纬中路交叉口的车流数据。对车流数据按时间进行整理,以便识别高峰和低谷时段。
  2. 时段划分: 使用聚类算法(如K-means)将一天划分为不同的时段,根据车流量的变化确定不同的时段。
  3. 流量估计: 在每个时段内,根据四个方向(北-南、南-北、东-西、西-东)进行流量估计。要考虑直行、左转、右转的流量估计,可以基于车辆的进入和离开位置进行推断。

【解题思路】

为了回答第一问,我们需要将一天分成若干个时段,并估计经中路-纬中路交叉口在不同时段各个相位的车流量。以下是详细的建模过程,包括数据处理、时段划分、流量估计,以及引入智能优化算法的步骤。

1. 数据预处理

首先从附件2中提取经中路-纬中路交叉口的车流数据。数据包括车辆经过的时间、方向、位置等信息。需要对这些数据进行清洗和整理:

  1. 数据清洗: 去除重复数据,处理缺失值。
  2. 时间序列构建: 将车流数据按时间顺序排列,构建时间序列,便于后续分析。

2. 时段划分

将一天分为若干个时段,使得每个时段内的车流量变化较小。为实现这一目标,可以使用聚类算法,如K-means进行时段划分。步骤如下:

特征提取: 计算每个小时或每半小时的车流量作为特征向量x=(x1,x2,...,xn),其中xi表示第i个时段的车流量。

聚类分析: 使用K-means算法将特征向量聚类为 k 个类别,每个类别代表一个时段。选择合适的k  值可以通过肘部法则或轮廓系数进行确定。

K-means目标函数:

其中,Ci 是第i个聚类,μi 是 Ci 的中心。

3. 车流量估计

在每个时段内,我们需要估计各个相位(四个方向直行、左转、右转)的车流量。由于附件2中的数据无法直接区分车辆的转向行为,我们可以利用以下步骤进行估计:

  1. 方向流量计算: 对每个方向上的车辆计数,计算其流量:

    2. 转向行为推断: 假设车辆在交叉口的转向比例是已知的(通过历史数据或交通规则推断),则可以估计左转、直行和右转的流量。设转向比例为 ,分别代表左转、直行和右转的比例:

直行流量:

左转流量:

右转流量:

4. 优化算法引入

为提升车流量估计的准确性,可以引入智能优化算法,如粒子群优化(PSO)来优化时段划分和流量估计的参数。

粒子群优化(PSO)步骤:

  1. 初始化: 初始化粒子群,设定粒子的位置和速度,目标是最小化估计误差。
  2. 适应度函数: 设定适应度函数,衡量估计流量与实际流量之间的误差:

适应度函数:

     3. 迭代更新: 更新粒子的速度和位置,使其逐步靠近最优解。速度更新公式:

位置更新公式:

Python参考代码】

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans# 假设数据已从附件2加载,数据包括车辆的拍摄时间和方向
# 加载数据
data = pd.read_csv('traffic_data.csv')  # 使用实际数据文件路径# 数据预处理
data['timestamp'] = pd.to_datetime(data['timestamp'])  # 将时间列转换为datetime格式
data['hour'] = data['timestamp'].dt.hour  # 提取小时
data['minute'] = data['timestamp'].dt.minute  # 提取分钟# 按照时间对车流量进行统计
traffic_counts = data.groupby(['hour', 'minute', 'direction']).size().reset_index(name='count')# 展示部分数据
print(traffic_counts.head())# 特征提取:将每小时和分钟的车流量作为特征向量
traffic_counts['time'] = traffic_counts['hour'] * 60 + traffic_counts['minute']
traffic_features = traffic_counts.pivot(index='time', columns='direction', values='count').fillna(0)# 使用K-means进行时段划分
kmeans = KMeans(n_clusters=4, random_state=42)  # 设定要分成的时段数目,例如4个时段
traffic_counts['time_period'] = kmeans.fit_predict(traffic_features)# 将时段结果合并回原始数据
traffic_counts = traffic_counts.merge(traffic_features, left_on='time', right_index=True)# 可视化时段划分结果
plt.figure(figsize=(15, 6))
plt.scatter(traffic_counts['time'], traffic_counts['count'], c=traffic_counts['time_period'], cmap='viridis')
plt.colorbar(label='Time Period')
plt.xlabel('Time (minutes from midnight)')
plt.ylabel('Traffic Count')
plt.title('Time Periods Segmentation by Traffic Flow')
plt.grid(True)
plt.show()# 假设直行、左转、右转的比例已知
alpha = 0.3  # 左转比例
beta = 0.5   # 直行比例
gamma = 0.2  # 右转比例# 计算每个时段的各个相位的车流量
traffic_counts['straight'] = beta * traffic_counts['count']
traffic_counts['left_turn'] = alpha * traffic_counts['count']
traffic_counts['right_turn'] = gamma * traffic_counts['count']# 按时段汇总车流量
periodic_flow = traffic_counts.groupby('time_period').agg({'straight': 'sum','left_turn': 'sum','right_turn': 'sum'
}).reset_index()# 可视化车流量估计结果
plt.figure(figsize=(15, 6))
plt.plot(periodic_flow['time_period'], periodic_flow['straight'], label='Straight', marker='o')
plt.plot(periodic_flow['time_period'], periodic_flow['left_turn'], label='Left Turn', marker='o')
plt.plot(periodic_flow['time_period'], periodic_flow['right_turn'], label='Right Turn', marker='o')
plt.xlabel('Time Period')
plt.ylabel('Traffic Flow (vehicles)')
plt.title('Estimated Traffic Flow for Each Time Period')
plt.legend()
plt.grid(True)
plt.show()

这篇关于【2024数模国赛赛题思路公开】国赛E题思路丨附可运行代码丨无偿自提的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141481

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js