torchvision数据集使用

2024-09-06 04:28
文章标签 数据 使用 torchvision

本文主要是介绍torchvision数据集使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、下载torchvision中的数据集文件
    • 二、断点知识点
    • 三、数据集形式建立
    • 四、展示数据集中的图片

一、下载torchvision中的数据集文件

这段代码是使用PyTorch的torchvision库来加载CIFAR-10数据集。

import torchvision
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)

root指在什么位置,train的True表示创建一个训练集,为False表示创建一个测试集,download为True的话则是直接下载
./dataset表示的是相对路径,把数据保存进名为Dataset中

回车后得到:
在这里插入图片描述

复制蓝色的链接,还可以在迅雷中添加链接进行下载,这样子下载的速度可能相对较快。

在下载好了文件包,可以在pycharm文件中见到Dataset文件包
在这里插入图片描述

二、断点知识点

  • 只要我们在代码行的最左侧点击一下鼠标左键,就完成设置断点

在这里插入图片描述

  • 设置好断点后我们可以进入调试模式
  • 调试模式不同于运行模式,如果进行代码运行那么断点就依然忽略不计
    鼠标右键点击一下,可以看到一只瓢虫,点击就是进行调试
    在这里插入图片描述
  • 调试的话就会将代码运行到断点就不运行了,同时在下面可以看到具体数据内容

在这里插入图片描述

调试的具体用法:
在这里插入图片描述

再来看看更重要的横排按钮:
在这里插入图片描述
1.跳转到当前断点(断点后你为了查看逻辑可能去了其他文件或行,点这个就能回到当前断点的行)
2.step over(F8快捷键):在当前层代码单步执行。
3.step into(F7快捷键):单步执行,但会进入子函数。如果一直按F7,则会一层层一直进入。
4.step into my code(Alt+Shift+F7快捷键):单步执行,只进入自己代码的子函数,不会进入导入包的子函数。

三、数据集形式建立

import torchvision
from torch.utils.tensorboard import SummaryWriterdataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),])
#root指在什么位置,train的True表示创建一个训练集,为False表示创建一个测试集
#download为True的话则是直接下载
#./dataset表示的是相对路径,把数据保存进去
#把转换成totensor格式的transform对每张照片进行处理
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)#打印测试集中的第一个数据项
print(test_set[0])#打印测试集中所有的类别名称
print(test_set.classes)# 提取测试集中的第一个数据项,img是图像数据,target是图像对应的类别索引。
img, target = test_set[0]# 打印提取出的图像数据。
print(img)
# 打印提取出的类别索引。
print(target)

运行结果:
在这里插入图片描述
在这里插入图片描述
最下面的 3 表示类名classes的第三项,也就是[‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’] 中列表的第三项 “cat”

四、展示数据集中的图片

import torchvision
from torch.utils.tensorboard import SummaryWriterdataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),])train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)writer = SummaryWriter("p10")# 循环遍历测试集中的前10张图像。
for i in range(10):# 提取图像和对应的标签。img, target = test_set[i]# 使用SummaryWriter的add_image方法将图像写入TensorBoard日志。# "test_set"是图像的标签,img是图像数据,i是图像的索引。writer.add_image("test_set",img,i)writer.close()

在Terminal终端中输入:tensorboard --logdir="p10"
运行结果:
在这里插入图片描述

这篇关于torchvision数据集使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140994

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud