【数据产品案例】如何将知识图谱特征学习应用到推荐系统?

2024-09-06 04:18

本文主要是介绍【数据产品案例】如何将知识图谱特征学习应用到推荐系统?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例来源:@AI科技大本营
案例地址: https://mp.weixin.qq.com/s/_LuF4d0X_oHKuweo7Bt1Wg

1. 知识图谱应用到推荐系统中的三种方式
1)依次学习:先训练知识图谱模型,得到实体和实体关系的向量表示;再将该向量作为推荐模型的输入
2)联合学习:将知识图谱和推荐系统的目标函数结合,使用端到端的方式训练
3)交替学习:将知识图谱和推荐系统的训练放在一起,使用多任务学习的框架进行训练

2. 依次学习 - Deep Knowledge-Aware Network (DKN)
1)引入知识图谱特征:
a. 实体连接:将文中发现的词汇与实体进行匹配
b. 知识图谱构建:根据匹配的实体,从知识图谱中抽取出子图
c. 知识图谱特征学习:使用知识图谱特征学习算法(如TransE)学习实体的向量表示
d. 实体的上下文实体特征:一个实体e的上下文是实体的一跳近邻,e的上下文表示就是一跳近邻特征的平均值
2)构建推荐模型
a. 基于卷积神经网络的文本特征提取:新闻标题词向量、实体向量、实体上下文向量作为多通道,在CNN框架下进行融合
b. 基于注意力机制的用户历史兴趣融合:在判断用户对当前新闻的兴趣时,使用注意力网络给用户历史记录分配不同的权重
3)依次学习的优势在于将知识图谱训练与推荐系统训练分离,前者更新少、训练开销大。但缺点也来源于此,无法端到端训练,知识图谱的训练并不是为了推荐目标而来,不一定适应特定的推荐任务

3. 联合学习 - Collaborative Knowledge base Embedding (CKE)
1)对于结构数据(如导演、电影名):采用TransR进行学习,可以得到实体的特征表示
2)对于文本数据:采用去燥自编码器抽取向量化特征
3)对于图像数据:采用卷积-反卷积自编码器抽取向量化特征
4)将以上三种知识学习的目标函数与协同过滤的目标函数结合,得到以下联合损失函数
5)使用梯度下降法训练

4. 联合学习 - Ripple Network
1)基本思想:用户的兴趣以历史记录中的实体为中心,向外扩散并逐渐衰弱
2)过程【看不懂】:

5. 交替学习 - Multi-task Learning for KG enhanced Recommendation (MKR)
1)出发点:推荐算法中的物品和知识图谱中的实体存在重合,两者的学习存在相关性,两者信息可以互补
2)框架如图:
a. 左侧推荐任务的输入是用户和物品,输出是点击概率
b. 右侧知识图谱学习的任务输入是三元组和关系表示,输出是特征表示
c. 中间设计了交叉特征共享单元:

3)优势:知识图谱特征学习模块在下一次训练中可以继续使用,不用像联合学习一样从头开始学习

这篇关于【数据产品案例】如何将知识图谱特征学习应用到推荐系统?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140976

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念