【数据产品案例】如何将知识图谱特征学习应用到推荐系统?

2024-09-06 04:18

本文主要是介绍【数据产品案例】如何将知识图谱特征学习应用到推荐系统?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例来源:@AI科技大本营
案例地址: https://mp.weixin.qq.com/s/_LuF4d0X_oHKuweo7Bt1Wg

1. 知识图谱应用到推荐系统中的三种方式
1)依次学习:先训练知识图谱模型,得到实体和实体关系的向量表示;再将该向量作为推荐模型的输入
2)联合学习:将知识图谱和推荐系统的目标函数结合,使用端到端的方式训练
3)交替学习:将知识图谱和推荐系统的训练放在一起,使用多任务学习的框架进行训练

2. 依次学习 - Deep Knowledge-Aware Network (DKN)
1)引入知识图谱特征:
a. 实体连接:将文中发现的词汇与实体进行匹配
b. 知识图谱构建:根据匹配的实体,从知识图谱中抽取出子图
c. 知识图谱特征学习:使用知识图谱特征学习算法(如TransE)学习实体的向量表示
d. 实体的上下文实体特征:一个实体e的上下文是实体的一跳近邻,e的上下文表示就是一跳近邻特征的平均值
2)构建推荐模型
a. 基于卷积神经网络的文本特征提取:新闻标题词向量、实体向量、实体上下文向量作为多通道,在CNN框架下进行融合
b. 基于注意力机制的用户历史兴趣融合:在判断用户对当前新闻的兴趣时,使用注意力网络给用户历史记录分配不同的权重
3)依次学习的优势在于将知识图谱训练与推荐系统训练分离,前者更新少、训练开销大。但缺点也来源于此,无法端到端训练,知识图谱的训练并不是为了推荐目标而来,不一定适应特定的推荐任务

3. 联合学习 - Collaborative Knowledge base Embedding (CKE)
1)对于结构数据(如导演、电影名):采用TransR进行学习,可以得到实体的特征表示
2)对于文本数据:采用去燥自编码器抽取向量化特征
3)对于图像数据:采用卷积-反卷积自编码器抽取向量化特征
4)将以上三种知识学习的目标函数与协同过滤的目标函数结合,得到以下联合损失函数
5)使用梯度下降法训练

4. 联合学习 - Ripple Network
1)基本思想:用户的兴趣以历史记录中的实体为中心,向外扩散并逐渐衰弱
2)过程【看不懂】:

5. 交替学习 - Multi-task Learning for KG enhanced Recommendation (MKR)
1)出发点:推荐算法中的物品和知识图谱中的实体存在重合,两者的学习存在相关性,两者信息可以互补
2)框架如图:
a. 左侧推荐任务的输入是用户和物品,输出是点击概率
b. 右侧知识图谱学习的任务输入是三元组和关系表示,输出是特征表示
c. 中间设计了交叉特征共享单元:

3)优势:知识图谱特征学习模块在下一次训练中可以继续使用,不用像联合学习一样从头开始学习

这篇关于【数据产品案例】如何将知识图谱特征学习应用到推荐系统?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140976

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,