【2024数模国赛赛题思路公开】国赛C题思路丨附可运行代码丨无偿自提

2024-09-06 02:28

本文主要是介绍【2024数模国赛赛题思路公开】国赛C题思路丨附可运行代码丨无偿自提,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024年国赛C题解题思路

C   农作物的种植策略

根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略,有利于方便田间管理,提高生产效益,减少各种不确定因素可能造成的种植风险。

某乡村地处华北山区,常年温度偏低,大多数耕地每年只能种植一季农作物。该乡村现有露天耕地 1201 亩,分散为 34 个大小不同的地块,包括平旱地、梯田、山坡地和水浇地 4 种类型。平旱地、梯田和山坡地适宜每年种植一季粮食类作物;水浇地适宜每年种植一季水稻或两季蔬菜。该乡村另有16 个普通大棚和4 个智慧大棚,每个大棚耕地面积为0.6 亩。普通大棚适宜每年种植一季蔬菜和一季食用菌,智慧大棚适宜每年种植两季蔬菜。同一地块(含大棚)每季可以合种不同的作物。详见附件1。

根据农作物的生长规律,每种作物在同一地块(含大棚)都不能连续重茬种植,否则会减产;因含有豆类作物根菌的土壤有利于其他作物生长,从 2023 年开始要求每个地块(含大棚)的所有土地三年内至少种植一次豆类作物。同时,种植方案应考虑到方便耕种作业和田间管理,譬如:每种作物每季的种植地不能太分散,每种作物在单个地块(含大棚)种植的面积不宜太小,等等。2023年的农作物种植和相关统计数据见附件 2。

请建立数学模型,研究下列问题:

问题1 假定各种农作物未来的预期销售量、种植成本、亩产量和销售价格相对于 2023 年保持稳定,每季种植的农作物在当季销售。如果某种作物每季的总产量超过相应的预期销售量,超过部分不能正常销售。请针对以下两种情况,分别给出该乡村 2024~2030 年农作物的最优种植方案,将结果分别填入result1_1.xlsx 和result1_2.xlsx 中(模板文件见附件3)。

(1)  超过部分滞销,造成浪费;

(2)  超过部分按2023 年销售价格的50%降价出售。

【题目分析】

任务:在假定农作物的销售量、种植成本、亩产量和销售价格稳定的情况下,为乡村2024-2030年制定最优的种植方案。需要考虑两种情况:

  1. 滞销浪费:超出部分无法销售,需合理分配种植面积,避免浪费。
  2. 降价出售:超出部分按50%的价格出售,这可能影响种植策略,需要平衡不同农作物的收益和种植面积。

【初步思路】

第一问的详细思路与建模过程

问题背景:

我们需要在假定农作物的销售量、种植成本、亩产量和销售价格稳定的情况下,为乡村2024-2030年制定最优种植方案。目标是最大化利润,并要考虑两种情况:

  1. 滞销浪费:超过部分无法销售,造成浪费。
  2. 降价出售:超过部分按原售价的50%处理。

【解题思路】

一、问题转化为数学模型

1. 变量定义

  • 地块变量
    • 记Ai 表示第 i 个地块的面积(亩),i=1,2,...,n,其中n=34 。
    • 每个地块可以种植不同的作物,记 Xu 为第i个地块种植第j种作物的面积(亩),j=1,2,...,m,其中 m 是作物种类。
  • 作物产量和价格
    • 记 Yj为第j种作物的单位面积产量(吨/亩),Pj 为该作物的单位售价(元/吨)。
  • 成本和收益
    • 记 Cj 为种植第j种作物的单位面积成本(元/亩)。
    • 收益为作物销售量与售价的乘积,超出销售量部分按不同情况处理。
  • 作物销售量约束
    • 设第j种作物的预期销售量为 Sj(吨),当种植量超过此值,需根据不同情况处理。

2. 目标函数

目标是最大化2024-2030年种植方案的总利润。首先,作物的总产量为:

基于此,作物的利润分为两种情况:

  1. 滞销浪费: 当 QU≤SJ 时,所有产量均以正常价格出售;当 QU>SJ 时,超过部分无法出售。总利润为:

      2. 降价出售: 当 QU>SJ 时,超过部分以50%的价格出售,收益为:

整个种植方案的总利润为所有地块和作物的利润之和:

      3. 约束条件

  • 面积约束:每个地块的作物种植面积不能超过总面积:

  • 作物适应性约束:不同地块只能种适宜的作物。例如,梯田和山坡地只能种粮食类作物,水浇地可以种水稻或蔬菜。
  • 轮作约束:每块地在三年内至少种一次豆类作物。用二进制变量 Bij 表示某季是否种植豆类作物:

二、引入智能优化算法

由于问题涉及多个地块、多种作物,并且有复杂的约束条件和非线性目标函数,使用智能优化算法(如遗传算法)更为适合。

1. 遗传算法(GA)概述

  • 编码:每个地块的种植方案表示为一个基因,整个种植方案为一个个体。
  • 适应度函数:适应度函数为目标函数,即总利润,目标是通过选择、交叉、变异操作逐步优化种植方案。
  • 操作步骤
    1. 初始种群生成:随机生成一批种植方案。
    2. 适应度评估:计算每个方案的总利润。
    3. 选择:根据适应度高低选择个体。
    4. 交叉与变异:生成新个体并确保种群多样性。
    5. 终止条件:达到设定迭代次数或适应度不再显著提高。

2. 遗传算法的公式表示

  • 选择操作:轮盘赌选择法,个体被选中的概率为:

其中 fi为第 i 个个体的适应度,N 为种群大小。

  • 交叉操作:两个种植方案交叉生成新的方案,交叉概率为Pc,生成新个体的公式为:

变异操作:随机调整种植面积,变异概率为Pm。

Python参考代码】

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linprog
import random
import seaborn as sns# 读取农作物信息(面积、作物类型、单价、产量等)
land_data = pd.read_excel('/path/to/附件1.xlsx')
production_data = pd.read_excel('/path/to/附件2.xlsx')# 地块面积信息
area = land_data['地块面积'].values# 2023年农作物信息,包括单价、种植成本、产量等
crop_data = production_data[['作物类型', '产量', '单价', '种植成本', '预期销售量']].set_index('作物类型')# 从crop_data提取变量
yield_per_acre = crop_data['产量'].values
price_per_ton = crop_data['单价'].values
cost_per_acre = crop_data['种植成本'].valuessales_expectation = crop_data['预期销售量'].values# 变量数量
num_land_blocks = len(area)  # 地块数量
num_crops = len(crop_data)   # 作物种类数量# 遗传算法相关参数
population_size = 50
generations = 100
mutation_rate = 0.01# 初始化种群
def init_population(size):return np.random.rand(size, num_land_blocks, num_crops)# 适应度函数,计算总利润
def fitness(individual):profit = 0for i in range(num_land_blocks):for j in range(num_crops):planted_area = individual[i, j] * area[i]production = planted_area * yield_per_acre[j]if production <= sales_expectation[j]:profit += production * price_per_ton[j] - planted_area * cost_per_acre[j]else:surplus = production - sales_expectation[j]profit += sales_expectation[j] * price_per_ton[j] + surplus * (price_per_ton[j] / 2) - planted_area * cost_per_acre[j]return profitchild1.flat[point:], child2.flat[point:] = parent2.flat[point:], parent1.flat[point:]return child1, child2# 变异操作
def mutate(individual):if np.random.rand() < mutation_rate:i = np.random.randint(num_land_blocks)j = np.random.randint(num_crops)individual[i, j] = np.random.rand()return individual# 主遗传算法过程
def genetic_algorithm():population = init_population(population_size)best_solution = Nonebest_fitness = float('-inf')fitness_history = []for generation in range(generations):population = selection(population)new_population = []# 交叉产生新个体for i in range(0, len(population), 2):parent1 = population[i]parent2 = population[min(i+1, len(population)-1)]child1, child2 = crossover(parent1, parent2)new_population.append(mutate(child1))new_population.append(mutate(child2))population = np.array(new_population)# 记录最佳个体gen_best = max(population, key=fitness)gen_best_fitness = fitness(gen_best)fitness_history.append(gen_best_fitness)if gen_best_fitness > best_fitness:best_solution = gen_bestbest_fitness = gen_best_fitnessprint(f"Generation {generation + 1}: Best Fitness = {best_fitness}")return best_solution, fitness_history# 运行遗传算法
best_solution, fitness_history = genetic_algorithm()# 总利润随代数变化趋势
plt.figure(figsize=(10, 6))
plt.plot(fitness_history, label='Total Profit')
plt.xlabel('Generations')
plt.ylabel('Profit')
plt.title('Total Profit Over Generations')
plt.legend()
plt.grid(True)
plt.show()# 各地块的最佳作物种植方案
def plot_solution(solution):plt.figure(figsize=(12, 8))sns.heatmap(solution, annot=True, fmt=".2f", cmap='Blues', xticklabels=crop_data.index, yticklabels=land_data['地块名称'])plt.title("Optimal Crop Distribution Across Lands")plt.xlabel("Crops")plt.ylabel("Land Blocks")plt.show()# 可视化最佳种植方案
plot_solution(best_solution)

这篇关于【2024数模国赛赛题思路公开】国赛C题思路丨附可运行代码丨无偿自提的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140742

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里