【2024高教社杯全国大学生数学建模竞赛】B题 生产过程中的决策问题——解题思路 代码 论文

本文主要是介绍【2024高教社杯全国大学生数学建模竞赛】B题 生产过程中的决策问题——解题思路 代码 论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 问题 1:抽样检测方案的设计
  • 问题 2:生产过程中的决策
  • 问题 3:多工序、多零配件的生产决策
  • 问题 4:重新分析次品率
  • 题目难度分析
    • 1. 统计检测方案设计的复杂性(问题 1)
    • 2. 多阶段生产决策的复杂性(问题 2 & 3)
    • 3. 多工序、多零配件的组合复杂性(问题 3)
    • 4. 次品率估计的重新决策(问题 4)
  • 参考模型

问题 1:抽样检测方案的设计

目标是为企业设计抽样检测方案,以尽可能少的检测次数判定零配件次品率是否超过标称值。

  1. 假设检测过程服从二项分布,即抽取一定数量的样本,根据样本中不合格零配件的数量推断整体次品率。
  2. 根据标称值和信度水平 ,应用统计学中的假设检验理论。这里可以采用 假设检验的双侧检验,设置:
    零假设:次品率不超过标称值;
    备择假设:次品率超过标称值。
  3. 检验方案设计:
    通过计算置信区间,结合企业的次品率要求以及信度水平(95%和90%),确定需要的样本量。
    可采用 样本量计算公式 来确定最少的检测次数,确保在给定信度下可以得出正确结论。

问题 2:生产过程中的决策

为生产过程中不同阶段做出决策,包含零配件检测、成品检测、不合格成品处理等。

  1. 零配件检测:
    计算检测成本与不检测带来的潜在风险损失(如不合格零配件进入装配过程会导致更多的成品不合格)。
    通过分析次品率、检测成本等因素,决定是否对零配件进行检测。若检测成本较高且次品率较低,可能选择不检测。

  2. 成品检测:
    需要权衡成品的市场售价、检测成本以及调换不合格成品的损失。
    通过建模计算各决策方案下的总成本,找出最优的检测方案(检测或不检测)。

  3. 不合格成品拆解: 分析拆解费用与次品率,判断拆解零配件的价值是否高于直接报废不合格成品。对于高拆解费用但零配件较贵的情况,可以选择拆解,否则直接报废。

  4. 退回的成品处理:同样使用成本效益分析,对退回产品的处理(拆解或丢弃)做出最优决策。

问题 3:多工序、多零配件的生产决策

本问题在问题 2 的基础上增加了更多复杂度,要求考虑多道工序及更多零配件的生产决策。

  1. 多工序影响:
    各道工序会影响零配件和半成品的次品率,需要建立更为复杂的模型。
    通过 马尔科夫链或蒙特卡洛模拟 等方法预测不同工序下的质量演变,计算各工序的最优策略。

  2. 多零配件决策:
    不同零配件的次品率和成本不一,对每个零配件进行单独决策。
    根据总装配成本、检测成本和市场售价,优化整体生产链的成本结构。

问题 4:重新分析次品率

在问题 4 中,假设问题 2 和问题 3 中的次品率是通过抽样检测方法得到的。这意味着需要重新结合问题 1 中设计的抽样检测方案,重新计算次品率并基于此调整各个决策。

  1. 结合抽样检测数据 :
    使用问题 1 中得出的检测方案,得到更为精确的次品率估计值。
    将这些估计值替换到问题 2 和问题 3 中的模型,重新做出决策。

  2. 决策调整:
    可能由于次品率估计值的变化,导致某些阶段的检测方案或处理策略需要调整。需再次优化总成本模型。

    总结
    该题的解决思路可以通过 建立统计模型与成本分析模型 来解决。关键在于:
    问题 1 采用假设检验与抽样检测设计。
    问题 2 和问题 3 结合成本效益分析,优化生产各环节的检测与处理方案。
    问题 4 结合前面问题中的抽样检测结果,重新校正生产决策。

题目难度分析

本题涉及抽样检测、生产决策优化以及多阶段、多零配件的质量管理等问题,难度主要体现在以下几个方面:

1. 统计检测方案设计的复杂性(问题 1)

问题 1 要求设计一个抽样检测方案,并且在给定信度下最小化检测次数。挑战在于:
假设检验的设计 :需要在不同的置信度要求下分别给出拒收或接收的检测标准,涉及到统计学中的假设检验、置信区间计算以及样本量估计。
优化抽样数量 :最小化样本量的同时,确保置信区间能够准确反映实际次品率。这要求考察统计分布(如二项分布或正态分布)的性质,并进行优化计算。

2. 多阶段生产决策的复杂性(问题 2 & 3)

生产过程的各阶段决策需考虑到多种成本(检测成本、装配成本、拆解成本等)与潜在收益的平衡,且各个阶段的决策互相关联。这部分的难点包括:
零配件与成品的次品率关联 :成品次品率不仅取决于零配件的质量,还会受到装配过程的影响,因此需要建立合理的模型来预测成品的次品率。多阶段决策的递归性 :在每个阶段做出的决策都会影响后续的阶段,这使得问题呈现出递归结构,适合使用动态规划或马尔科夫决策过程等递归方法解决。

3. 多工序、多零配件的组合复杂性(问题 3)

多道工序、多零配件的组合进一步增加了问题的复杂度:
次品率与装配的复杂组合 :问题 3 中的生产过程由多个工序和多个零配件组成,导致次品率的累积效应较难精确计算。
决策空间增大 :随着零配件数量和工序数量的增加,决策变量也大幅增加,需要更为有效的搜索算法,如启发式算法、遗传算法等,来寻找最优解。

4. 次品率估计的重新决策(问题 4)

本问题要求结合抽样检测的结果,重新进行生产决策:
动态调整次品率 :在实际生产过程中,次品率是通过抽样检测得到的,且会随着生产的进行动态变化,如何利用新的次品率数据调整生产流程是一个难点
重新优化决策 :每次重新估计次品率后,都需要重新进行多阶段的决策优化,这增加了问题的动态性和复杂性。

参考模型

  1. 假设检验模型
    描述 :用于问题 1 中抽样检测的设计。
    参考模型 :二项分布假设检验、正态分布近似、置信区间计算。

  2. 成本效益分析模型
    描述 :用于问题 2 和问题 3 中的生产过程决策。
    参考模型 :在经济学和管理科学中的成本效益分析模型。

  3. 动态规划模型
    描述 :用于分阶段的决策优化问题(如问题 2 和问题 3),特别适合多阶段递归性问题。
    参考模型 :Bellman提出的动态规划框架,常用于求解多阶段决策问题。

  4. 马尔科夫决策过程 (MDP)
    描述 :用于多工序、多阶段、多零配件的生产过程决策。
    参考模型 :马尔科夫决策过程(MDP)是处理多阶段决策的标准工具之一。

  5. 蒙特卡洛模拟
    描述 :用于应对生产过程中的不确定性,可以通过模拟大量次品率和生产过程,评估不同决策下的平均成本。

  6. 启发式算法
    描述 :适用于多工序和多零配件的复杂决策问题。
    参考模型 :模拟退火算法、遗传算法等启发式搜索方法。

  7. 贝叶斯更新模型
    描述 :用于问题 4 中基于新的检测数据更新次品率的估计。
    参考模型 :贝叶斯统计推断模型,通过新的数据不断调整先验概率。

本题的难度主要在于综合应用统计分析、生产决策优化、动态规划等多种模型和算法,处理多阶段、多零配件生产中的决策复杂性和不确定性 。在解题过程中,合理选择并结合这些经典的参考模型,能够有效解决该问题中的多个挑战。

A-E题的解题思路、模型代码,论文持续更新中!

这篇关于【2024高教社杯全国大学生数学建模竞赛】B题 生产过程中的决策问题——解题思路 代码 论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140193

相关文章

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python