【UVALive】3887 Slim Span 枚举+最小生成树

2024-09-05 15:48

本文主要是介绍【UVALive】3887 Slim Span 枚举+最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【UVALive】3887 Slim Span


题目大意:给出一个n(2 <= n <= 100)个结点的无向图,找一棵苗条度(最大边减最小边的值)最小的生成树。图中不含自环或重边。


题目分析:枚举最小边求生成树即可。模板用用萌萌哒~


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define LOGF( j , a , b ) for ( int j = 1 ; ( 1 << j ) < n ; ++ j )
#define EDGE( i , x ) for ( int i = adj[x] ; ~i ; i = edge[i].n )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define clear( a , x ) memset ( a , x , sizeof a )const int LOGN = 20 ;
const int MAXN = 105 ;
const int MAXE = 100005 ;
const int OO = 0x3f3f3f3f ;
struct Line {int x , y , val ;void input () {scanf ( "%d%d%d" , &x , &y , &val ) ;}bool operator < ( const Line &a ) const {return val < a.val ;}
} ;struct Edge {int v , w , n ;Edge ( int V = 0 , int W = 0 , int N  = 0 ) :v(V) , w(W) , n(N) {}
} ;struct findAndUnion {int p[MAXN] ;int rank[MAXN] ;void init () {REP ( i , MAXN )p[i] = i , rank[i] = 1 ;}int find ( int x ) {//非递归查找+路径压缩int tmp , o = x , ans ;while ( p[o] != o )o = p[o] ;ans = o ;o = x ;while ( p[o] != o ) {tmp = p[o] ;p[o] = ans ;o = tmp ;}return ans ;}//findint Union ( int x , int y ) {//合并(按秩合并)int f1 = find ( x ) ;int f2 = find ( y ) ;if ( f1 != f2 ) {if ( rank[f1] <= rank[f2] ) {//秩小的合并到秩大的点上p[f1] = f2 ;if ( rank[f1] == rank[f2] )++ rank[f2] ;}elsep[f2] = f1 ;return 1 ;}return 0 ;}//union
} ;struct MST {//并查集findAndUnion F ;int p[MAXN] ;//并查集父节点Line line[MAXE] ;//读入边集Edge edge[MAXE] ;//最小生成树边集int adj[MAXN] , cntE ;//表头及指针//倍增处理及查询(可用于LCA)int maxcost[MAXN][LOGN] ;//maxcost[u][v],最小瓶颈路int anc[MAXN][LOGN] ;//anc[i][j]表示结点i的第2^j级祖先,2^0就是父亲int cost[MAXN] ;//cost[i]表示i与父亲fa[i]之间的边权int fa[MAXN] ;//父节点int deep[MAXN] ;//结点深度int n , m ;//结点数,边数void init () {cntE = 0 ;clear ( adj , -1 ) ;clear ( deep , 0 ) ;}//initvoid addedge ( int u , int v , int w ) {edge[cntE] = Edge ( v , w , adj[u] ) ;adj[u] = cntE ++ ;edge[cntE] = Edge ( u , w , adj[v] ) ;adj[v] = cntE ++ ;}//addedgeint kruskal ( int x ) {//求最小生成树F.init () ;sort ( line + x , line + m ) ;int cnt = 0 ;//int ans = 0 ;REPF ( i , x , m - 1 ) {int tmp = F.Union ( line[i].x , line[i].y ) ;if ( tmp ) {++ cnt ;//ans += line[i].val ;//addedge ( line[i].x , line[i].y , line[i].val ) ;//添加树边if ( cnt == n - 1 ) {//已经得到所有树边,退出//return ans ;return line[i].val - line[x].val ;}}}return -1 ;//构不成树}//kruskalvoid dfs ( int u , int p ) {//得到有根树EDGE ( i , u ) {int v = edge[i].v ;if ( v == p ) continue ;fa[v] = u ;//v的父亲是udeep[v] = deep[u] + 1 ;cost[v] = edge[i].w ;dfs ( v , u ) ;}}//dfsvoid preProcess () {//预处理出anc和maxcost数组REPF ( i , 1 , n ) {anc[i][0] = fa[i] ;// i^0 级祖先就是父亲maxcost[i][0] = cost[i] ;//i与fa[i]之间的最大权值就是cost[i]LOGF ( j , 1 , n )anc[i][j] = -1 ;}LOGF ( j , 1 , n )REPF ( i , 1 , n )if ( ~anc[i][j - 1] ) {int a = anc[i][j - 1] ;anc[i][j] = anc[a][j - 1] ;maxcost[i][j] = max ( maxcost[i][j - 1] , maxcost[a][j - 1] ) ;//选择i~anc[i][j - 1]中的最大权值和anc[i][j - 1]~anc[anc[i][j - 1][j - 1]中的最大权值//也就是i ~ (i^(j-1)) 和 (i^(j-1)) ~ i^j 中选取最大权值(子段的最大权值已经求出)}}//preProcessint query ( int p , int q ) {//查询两点间的最小瓶颈路int tmp , log = 0 , ans = -OO ;if ( deep[p] < deep[q] )//令p的深度大于等于q,不满足就交换swap ( p , q ) ;LOGF ( i , 1 , deep[p] + 1 )//得到p的最大log段( 满足 ( 1 << log ) <= deep[p] , 1 << ( log + 1 ) > deep[p] )++ log ;REPV ( i , log , 0 )//将p的深度降低到与q相同,同时求出p到q深度之间的最大权值if ( deep[p] - ( 1 << i ) >= deep[q] ) {//第2^i级祖先的深度大于等于qans = max ( ans , maxcost[p][i] ) ;p = anc[p][i] ;//跳到2^i级祖先的位置}if ( p == q )//q是p的祖先,则之前的处理直接让p下降到q的位置,p、q之间的最大权值已经求出return ans ;//LCA返回p( p 等于 q )REPV ( i , log , 0 )//比较的前提是p、q深度相同if ( ~anc[p][i] && anc[p][i] != anc[q][i] ) {//p和q深度相同,判断一个即可//同时祖先不能是同一个,保证所比较的都是唯一路径上的边,否则会跳出最近公共祖先,得到错误结果ans = max ( ans , maxcost[p][i] ) ;ans = max ( ans , maxcost[q][i] ) ;p = anc[p][i] ;//跳q = anc[q][i] ;//跳}ans = max ( ans , cost[p] ) ;ans = max ( ans , cost[q] ) ;return ans ;//LCA返回fa[p]( 它也等于fa[q] )}//query
} ;MST tree ;void work () {int u , v ;while ( ~scanf ( "%d%d" , &tree.n , &tree.m ) && ( tree.n || tree.m ) ) {REP ( i , tree.m )tree.line[i].input () ;int ans = tree.kruskal ( 0 ) ;//求最小生成树if ( ans == -1 )printf ( "-1\n" ) ;else {REPF ( i , 1 , tree.m ) {int tmp = tree.kruskal ( i ) ;if ( tmp == -1 ) {break ;}ans = min ( ans , tmp ) ;}printf ( "%d\n" , ans ) ;}}
}int main () {work () ;return 0 ;
}



这篇关于【UVALive】3887 Slim Span 枚举+最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139395

相关文章

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma