【HDU】2389 Rain on your Parade 二分匹配 Hopcroft-Krap算法

2024-09-05 15:32

本文主要是介绍【HDU】2389 Rain on your Parade 二分匹配 Hopcroft-Krap算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【HDU】2389 Rain on your Parade


题目分析:

这题目非要我学Hopcroft-Krap= =||。。普通的DFS版的二分匹配不行,最大流又爆内存。。不得不学更好的算法了。

二分匹配的其他性质我也不多说了,不会的自行搜索,网上很多的。

现在我主要对该算法的实现发表一下自己的见解。(算法复杂度的证明不会,论文没看太懂)

该算法的核心思想是通过bfs寻找多条相同长度的最短增广路实现多路增广,那么怎么进行bfs?

首先,将还未匹配的X集合的顶点加入队列。然后用这个队列中的元素挨个查找对应的Y集合的元素。

如果查找到的Y集合的元素是没被查找过的,如果其已经被覆盖,那么将与他匹配的X集合的元素入队;如果是没有被覆盖的,那么就确定了这次找到的最短增广路的长度了,之后所有大于等于该长度的X集合的节点都不用再用来继续查找了,因为不可能找到长度等于最短增广路长度的增广路了。当然找增广路的时候需要给所有的顶点距离标号,表示到起点的距离。

通过bfs与处理以后,在dfs中只走标号差等于1的路,可以节省很多时间。算法证明的复杂度是V^0.5*E。


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define clear( a , x ) memset ( a , x , sizeof a )const int MAXN = 3005 ;
const int MAXE = 10000000 ;
const int INF = 0x3f3f3f3f ;struct Edge {int v , n ;Edge () {}Edge ( int var , int next ) :v ( var ) , n ( next ) {}
} ;struct Node {int x , y , v ;void input () {scanf ( "%d%d%d" , &x , &y , &v ) ;}
} ;Edge E[MAXE] ;
Node A[MAXN] ;
int H[MAXN] , cntE ;
int Lx[MAXN] , Ly[MAXN] ;
int dx[MAXN] , dy[MAXN] ;
bool vis[MAXN] ;
int x[MAXN] , y[MAXN] ;
int Q[MAXN << 1] , head , tail ;
int t , n , m ;
int dis ;void addedge ( int u , int v ) {E[cntE] = Edge ( v , H[u] ) ;H[u] = cntE ++ ;
}int Hopcroft_Krap () {dis = INF ;head = tail = 0 ;clear ( dx , -1 ) ;clear ( dy , -1 ) ;REP ( i , n )if ( Lx[i] == -1 ) {dx[i] = 0 ;Q[tail ++] = i ;}while ( head != tail ) {int u = Q[head ++] ;if ( dx[u] >= dis )continue ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( dy[v] == -1 ) {dy[v] = dx[u] + 1 ;if ( Ly[v] == -1 )dis = dy[v] ;else {dx[Ly[v]] = dy[v] + 1 ;Q[tail ++] = Ly[v] ;}}}}return dis != INF ;
}int find ( int u ) {for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( !vis[v] && dy[v] == dx[u] + 1 ) {vis[v] = 1 ;if ( ~Ly[v] && dy[v] == dis )continue ;else if ( Ly[v] == -1 || find ( Ly[v] ) ) {Lx[u] = v ;Ly[v] = u ;return 1 ;}}}return 0 ;
}int match () {int ans = 0 ;clear ( Lx , -1 ) ;clear ( Ly , -1 ) ;while ( Hopcroft_Krap () ) {clear ( vis , 0 ) ;REP ( i , n )if ( Lx[i] == -1 )ans += find ( i ) ;}return ans ;
}int dist ( int i , int j ) {int X = A[i].x - x[j] ;int Y = A[i].y - y[j] ;return X * X + Y * Y ;
}void solve () {cntE = 0 ;clear ( H , -1 ) ;scanf ( "%d%d" , &t , &n ) ;REP ( i , n )A[i].input () ;scanf ( "%d" , &m ) ;REP ( i , m )scanf ( "%d%d" , &x[i] , &y[i] ) ;REP ( i , n ) {int tmp = t * t * A[i].v * A[i].v ;REP ( j , m )if ( dist ( i , j ) <= tmp )addedge ( i , j ) ;}printf ( "%d\n\n" , match () ) ;
}int main () {int T , cas ;for ( scanf ( "%d" , &T ) , cas = 1 ; cas <= T ; ++ cas ) {printf ( "Scenario #%d:\n" , cas ) ;solve () ;}return 0 ;
}


这篇关于【HDU】2389 Rain on your Parade 二分匹配 Hopcroft-Krap算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139352

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系