linux 部署Ollama本地大模型

2024-09-05 15:28

本文主要是介绍linux 部署Ollama本地大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

llama 是一个大模型的管理框架,其作用类似于 Docker:如果将每一个标准化的大模型视为“镜像”,那么 Ollama 就能够通过一行命令快速拉取并运行这些大模型。然而,Ollama 本身是基于命令行的服务,所以为了方便我们对大模型进行微调和使用,还需要引入 maxkb 。maxkb 提供了一个 ChatBot 界面,它会把我们输入的结构化知识、转换成大模型可以理解的语言(即嵌入向量),从而实现有效的交互。在本文中,将会引导大家何利用 Ollama 快速搭建本地的大模型服务,并结合 maxkb 构建一个私人定制知识库。

优势

  • 开源免费: Ollama 及其支持的模型完全开源免费,任何人都可以自由使用、修改和分发。
  • 简单易用: 无需复杂的配置和安装过程,只需几条命令即可启动和运行 Ollama。
  • 模型丰富: Ollama 支持 Llama 3、Mistral、Qwen2 等众多热门开源 LLM,并提供一键下载和切- 换功能。
  • 资源占用低: 相比于商业 LLM,Ollama 对硬件要求更低,即使在普通笔记本电脑上也能流畅运行。
  • 社区活跃: Ollama 拥有庞大且活跃的社区,用户可以轻松获取帮助、分享经验和参与模型开发。

如何使用

Ollama 支持在 ollama.com/library 上获取的模型列表,以下是一些可下载的示例模型:

模型列表

注意:运行 7B 模型至少需要 8 GB 的 RAM,运行 13B 模型需要 16 GB,运行 33B 模型需要 32 GB。

安装Ollama

第一步:按照
 curl -fsSL https://ollama.com/install.sh | sh
第二步:运行
ollama run llama3
第三步:查看状态
systemctl status ollama

● ollama.service - Ollama Service
Loaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: disabled)
Active: active (running) since 四 2024-08-15 19:02:40 CST; 3s ago
Main PID: 128252 (ollama)
Tasks: 10
Memory: 414.1M
CGroup: /system.slice/ollama.service
└─128252 /usr/local/bin/ollama serve

第三步:修改端口
netstat -tunlp|grep ollama
vim /etc/systemd/system/ollama.service

下面添加一行

Environment="OLLAMA_HOST=0.0.0.0"

在这里插入图片描述

第四步:更改模型存放位置(可选步骤)
vim /etc/systemd/system/ollama.service

Environment=“OLLAMA_MODELS=/data/ollama/models”

位置同上

第五步: 重启 ollama
systemctl daemon-reload
systemctl restart ollama

安装maxkb

MaxKB 是一款基于 LLM 大语言模型的知识库问答系统,由飞致云开发。通过MaxKB可以实现在网页上可视化使用大语言模型。本次采用docker的方式直接部署。

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb

访问(默认账号:admin 密码:MaxKB@123…)
在这里插入图片描述

导入模型

系统管理---->模型设置---->Ollama---->添加模型
在这里插入图片描述

模型配置(API Key处任意输入:我这里输的是123)

在这里插入图片描述

注意这里你的 xxx:11435 必须是 Ollama is running
在这里插入图片描述

点击修改之后,会自动导入配置
在这里插入图片描述

创建应用

在应用处点击创建应用
在这里插入图片描述

输入自定义的应用名称,我这里输入ai

在这里插入图片描述

选择关联好的ai模型,点击右上角的保存并发布
在这里插入图片描述
回到概览,点击演示。可以根据需求修改参数

在这里插入图片描述
即可对话大语言模型
在这里插入图片描述

这篇关于linux 部署Ollama本地大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139342

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验