【HDU】2204 Eddy's爱好 容斥原理

2024-09-05 14:58
文章标签 原理 hdu 容斥 2204 eddy 爱好

本文主要是介绍【HDU】2204 Eddy's爱好 容斥原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【HDU】2204 Eddy's爱好


题目分析:首先,对于所有形如M^K的数我们都可以转化成M^(p1^k1 * p2^k2 * p3^k3 * ... )的形式,其中p1,p2,p3..为素数。则所有的M^K都可以转化成M'^p,其中p为素数。我们意识到2^60>10^18,所以只要求出前60以内的所有素数即可。然后,由于2*3*5*7>60,其中一个K的质因数最多只有三种。

令K'为每种质因数只有一个的数。

我们可以通过x = pow ( n , 1 / K' )求得指数为K'的数在[ 1 , n ]中出现的次数。

注意到可能存在x^p1 = y^p2(p1,p2为素数),那么我们就可以用容斥原理来去除重复。

则ans = sum { 指数为素数的个数x - 1 } - sum { 指数为两个质因数之积的个数x - 1 } + sum {指数为三个质因数之积的个数x - 1 } + 1。(x-1是因为不能包括这个数本身,否则K = 1不合题意;最后+1是因为还有个1)

这题精度要尤其注意。


代码如下:


#include <map>
#include <cmath>
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;#define REP( i , a , b ) for ( int i = ( a ) ; i <  ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )typedef long long LL ;const double eps = 1e-8 ;int prime[20] = { 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 } ;LL n ;int dfs ( LL n , int cur , int num ) {int ans = 0 ;REP ( i , cur , 17 ) {int tmp = pow ( n , 1.0 / ( num * prime[i] ) ) + eps ;if ( pow ( 1.0 * tmp , 1.0 * num * prime[i] ) > n + eps ) -- tmp ;-- tmp ;if ( tmp <= 0 ) break ;ans += tmp - dfs ( n , i + 1 , num * prime[i] ) ;}return ans ;
}int main () {while ( ~scanf ( "%I64d" , &n ) ) printf ( "%d\n" , dfs ( n , 0 , 1 ) + 1 ) ;return 0 ;
}


这篇关于【HDU】2204 Eddy's爱好 容斥原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139278

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事