【HDU】5221 Occupation【树链剖分】

2024-09-05 14:18

本文主要是介绍【HDU】5221 Occupation【树链剖分】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【HDU】5221 Occupation

题目分析:

最直接的想法,用一棵树链剖分维护路径,一棵dfs序线段树维护子树。因为每次最多修改一个点,所以修改的时候我们暴力修改每个点就可以了。

my  code:


#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std ;typedef long long LL ;#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , n
#define mid ( ( l + r ) >> 1 )const int MAXN = 100005 ;
const int MAXE = 200005 ;
const int INF = 0x3f3f3f3f ;struct Edge {int v , n ;Edge () {}Edge ( int v , int n ) : v ( v ) , n ( n ) {}
} ;Edge E[MAXE] ;
int H[MAXN] , cntE ;
int tpos[2][MAXN << 2] ;
int tin[2][MAXN] ;
int top[MAXN] ;
int siz[MAXN] ;
int pre[MAXN] ;
int dep[MAXN] ;
int pos[MAXN] ;
int son[MAXN] ;
int val[MAXN] ;
int dfs_clock ;
int idx[MAXN] ;
int ou[MAXN] ;
bool c[MAXN] ;
int tree_idx ;
int n , q ;
int ans ;void init () {ans = 0 ;cntE = 0 ;tree_idx = 0 ;dfs_clock = 0 ;clr ( H , -1 ) ;
}void addedge ( int u , int v ) {E[cntE] = Edge ( v , H[u] ) ;H[u] = cntE ++ ;
}void dfs ( int u ) {idx[u] = ++ dfs_clock ;tin[1][dfs_clock] = u ;siz[u] = 1 ;son[u] = 0 ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( v == pre[u] ) continue ;pre[v] = u ;dep[v] = dep[u] + 1 ;dfs ( v ) ;siz[u] += siz[v] ;if ( siz[son[u]] < siz[v] ) son[u] = v ;}ou[u] = dfs_clock ;
}void rebuild ( int u , int top_element ) {top[u] = top_element ;pos[u] = ++ tree_idx ;tin[0][tree_idx] = u ;if ( son[u] ) rebuild ( son[u] , top_element ) ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( v != pre[u] && v != son[u] ) rebuild ( v , v ) ;}
}void build ( int o , int l , int r ) {if ( l == r ) {tpos[0][o] = tin[0][l] ;tpos[1][o] = tin[1][l] ;return ;}int m = mid ;build ( lson ) ;build ( rson ) ;tpos[0][o] = max ( tpos[0][ls] , tpos[0][rs] ) ;tpos[1][o] = max ( tpos[1][ls] , tpos[1][rs] ) ;
}void update ( int x , int i , int v , int o , int l , int r ) {if ( l == r ) {tpos[i][o] = v ? tin[i][l] : 0 ;return ;}int m = mid ;if ( x <= m ) update ( x , i , v , lson ) ;else update ( x , i , v , rson ) ;tpos[i][o] = max ( tpos[i][ls] , tpos[i][rs] ) ;
}int query ( int L , int R , int i , int o , int l , int r ) {if ( L <= l && r <= R ) return tpos[i][o] ;int m = mid ;if ( R <= m ) return query ( L , R , i , lson ) ;if ( m <  L ) return query ( L , R , i , rson ) ;return max ( query ( L , R , i , lson ) , query ( L , R , i , rson ) ) ;
}void Update1 ( int x , int y ) {while ( top[x] != top[y] ) {if ( dep[top[x]] < dep[top[y]] ) swap ( x , y ) ;while ( 1 ) {int t = query ( pos[top[x]] , pos[x] , 0 , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 , 0 , root ) ;update ( idx[t] , 1 , 0 , root ) ;ans += val[t] ;//printf ( "%d\n" , t ) ;}x = pre[top[x]] ;}if ( dep[x] > dep[y] ) swap ( x , y ) ;while ( 1 ) {int t = query ( pos[x] , pos[y] , 0 , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 , 0 , root ) ;update ( idx[t] , 1 , 0 , root ) ;ans += val[t] ;}
}void Update2 ( int L , int R ) {while ( 1 ) {int t = query ( L , R , 1 , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 , 0 , root ) ;update ( idx[t] , 1 , 0 , root ) ;ans += val[t] ;}
}void solve () {int u , v , op ;init () ;scanf ( "%d" , &n ) ;for ( int i = 1 ; i <= n ; ++ i ) {scanf ( "%d" , &val[i] ) ;c[i] = 1 ;}for ( int i = 1 ; i < n ; ++ i ) {scanf ( "%d%d" , &u , &v ) ;addedge ( u , v ) ;addedge ( v , u ) ;}dfs ( 1 ) ;rebuild ( 1 , 1 ) ;build ( root ) ;scanf ( "%d" , &q ) ;for ( int i = 0 ; i < q ; ++ i ) {scanf ( "%d" , &op ) ;if ( op == 1 ) {scanf ( "%d%d" , &u , &v ) ;Update1 ( u , v ) ;} else if ( op == 2 ) {scanf ( "%d" , &u ) ;if ( !c[u] ) {c[u] = 1 ;update ( pos[u] , 0 , 1 , root ) ;update ( idx[u] , 1 , 1 , root ) ;ans -= val[u] ;}} else {scanf ( "%d" , &u ) ;Update2 ( idx[u] , ou[u] ) ;}printf ( "%d\n" , ans ) ;}
}int main () {int T ;scanf ( "%d" , &T ) ;for ( int i = 1 ; i <= T ; ++ i ) {solve () ;}return 0 ;
}

然而我们可以发现,树链剖分是有dfs序,然后我们就可以发现对于一个节点的子树,其子树构成的区间也是连续的,那么我们只需要一个树链剖分就够了。

my  code:


#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std ;typedef long long LL ;#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , n
#define mid ( ( l + r ) >> 1 )const int MAXN = 100005 ;
const int MAXE = 200005 ;
const int INF = 0x3f3f3f3f ;struct Edge {int v , n ;Edge () {}Edge ( int v , int n ) : v ( v ) , n ( n ) {}
} ;Edge E[MAXE] ;
int H[MAXN] , cntE ;
int tpos[MAXN << 2] ;
int tree[MAXN] ;
int top[MAXN] ;
int siz[MAXN] ;
int pre[MAXN] ;
int dep[MAXN] ;
int pos[MAXN] ;
int son[MAXN] ;
int val[MAXN] ;
int idx[MAXN] ;
int dfs_clock ;
bool c[MAXN] ;
int tree_idx ;
int in[MAXN] ;
int ou[MAXN] ;
int n , q ;
int ans ;void init () {ans = 0 ;cntE = 0 ;tree_idx = 0 ;dfs_clock = 0 ;clr ( H , -1 ) ;
}void addedge ( int u , int v ) {E[cntE] = Edge ( v , H[u] ) ;H[u] = cntE ++ ;
}void dfs ( int u ) {siz[u] = 1 ;son[u] = 0 ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( v == pre[u] ) continue ;pre[v] = u ;dep[v] = dep[u] + 1 ;dfs ( v ) ;siz[u] += siz[v] ;if ( siz[son[u]] < siz[v] ) son[u] = v ;}ou[u] = dfs_clock ;
}void rebuild ( int u , int top_element ) {in[u] = ++ dfs_clock ;top[u] = top_element ;pos[u] = ++ tree_idx ;idx[tree_idx] = u ;if ( son[u] ) rebuild ( son[u] , top_element ) ;for ( int i = H[u] ; ~i ; i = E[i].n ) {int v = E[i].v ;if ( v != pre[u] && v != son[u] ) rebuild ( v , v ) ;}ou[u] = dfs_clock ;
}void build ( int o , int l , int r ) {tpos[o] = idx[l] ;if ( l == r ) {tree[l] = o ;return ;}int m = mid ;build ( lson ) ;build ( rson ) ;
}void update ( int x , int v ) {int o = tree[x] ;tpos[o] = v ? idx[x] : 0 ;while ( o > 1 ) {o >>= 1 ;tpos[o] = max ( tpos[ls] , tpos[rs] ) ;}
}int query ( int L , int R , int o , int l , int r ) {if ( L <= l && r <= R ) return tpos[o] ;int m = mid ;if ( R <= m ) return query ( L , R , lson ) ;if ( m <  L ) return query ( L , R , rson ) ;return max ( query ( L , R , lson ) , query ( L , R , rson ) ) ;
}void Update1 ( int x , int y ) {while ( top[x] != top[y] ) {if ( dep[top[x]] < dep[top[y]] ) swap ( x , y ) ;while ( 1 ) {int t = query ( pos[top[x]] , pos[x] , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 ) ;ans += val[t] ;//printf ( "%d\n" , t ) ;}x = pre[top[x]] ;}if ( dep[x] > dep[y] ) swap ( x , y ) ;while ( 1 ) {int t = query ( pos[x] , pos[y] , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 ) ;ans += val[t] ;}
}void Update2 ( int L , int R ) {while ( 1 ) {int t = query ( L , R , root ) ;if ( !t ) break ;c[t] = 0 ;update ( pos[t] , 0 ) ;ans += val[t] ;}
}void solve () {int u , v , op ;init () ;scanf ( "%d" , &n ) ;for ( int i = 1 ; i <= n ; ++ i ) {scanf ( "%d" , &val[i] ) ;c[i] = 1 ;}for ( int i = 1 ; i < n ; ++ i ) {scanf ( "%d%d" , &u , &v ) ;addedge ( u , v ) ;addedge ( v , u ) ;}dfs ( 1 ) ;rebuild ( 1 , 1 ) ;build ( root ) ;scanf ( "%d" , &q ) ;for ( int i = 0 ; i < q ; ++ i ) {scanf ( "%d" , &op ) ;if ( op == 1 ) {scanf ( "%d%d" , &u , &v ) ;Update1 ( u , v ) ;} else if ( op == 2 ) {scanf ( "%d" , &u ) ;if ( !c[u] ) {c[u] = 1 ;update ( pos[u] , 1 ) ;ans -= val[u] ;}} else {scanf ( "%d" , &u ) ;Update2 ( in[u] , ou[u] ) ;}printf ( "%d\n" , ans ) ;}
}int main () {int T ;scanf ( "%d" , &T ) ;for ( int i = 1 ; i <= T ; ++ i ) {solve () ;}return 0 ;
}

这篇关于【HDU】5221 Occupation【树链剖分】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139197

相关文章

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时