【TVM 教程】在 Relay 中使用外部库

2024-09-05 11:04
文章标签 使用 教程 外部 relay tvm

本文主要是介绍【TVM 教程】在 Relay 中使用外部库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 → https://tvm.hyper.ai/

作者:Masahiro Masuda,Truman Tian

本文介绍如何将 cuDNN 或 cuBLAS 等外部库与 Relay 一起使用。

Relay 内部用 TVM 来生成 target-specific 的代码。例如,TVM 使用 CUDA 后端为用户提供的网络中的所有层生成 CUDA 内核。有时也可将各个供应商开发的外部库合并到 Relay 中,TVM 有一种机制可以透明地调用这些库——对于 Relay 用户,只需要设置一个适当的 target 字符串。

使用 Relay 的外部库前,用你要用的库构建 TVM。例如,要用 cuDNN,需启用 cmake/config.cmake 中的 USE_CUDNN 选项,必要时要指定 cuDNN 头文件和库目录。

首先导入 Relay 和 TVM。

import tvm
from tvm import te
import numpy as np
from tvm.contrib import graph_executor as runtime
from tvm import relay
from tvm.relay import testing
import tvm.testing

创建一个简单网络

下面创建一个简单网络进行演示,它由 convolution,batch normalization 和 ReLU activation 组成。

out_channels = 16
batch_size = 1data = relay.var("data", relay.TensorType((batch_size, 3, 224, 224), "float32"))
weight = relay.var("weight")
bn_gamma = relay.var("bn_gamma")
bn_beta = relay.var("bn_beta")
bn_mmean = relay.var("bn_mean")
bn_mvar = relay.var("bn_var")simple_net = relay.nn.conv2d(data=data, weight=weight, kernel_size=(3, 3), channels=out_channels, padding=(1, 1)
)
simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]
simple_net = relay.nn.relu(simple_net)
simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net)data_shape = (batch_size, 3, 224, 224)
net, params = testing.create_workload(simple_net)

使用 CUDA 后端构建和运行

正常使用 CUDA 后端构建和运行这个网络。设置日志记录级别为 DEBUG,Relay 计算图编译的结果将作为伪代码转储。

import logginglogging.basicConfig(level=logging.DEBUG) # to dump TVM IR after fusiontarget = "cuda"
lib = relay.build_module.build(net, target, params=params)dev = tvm.device(target, 0)
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
module = runtime.GraphModule(lib["default"](dev))
module.set_input("data", data)
module.run()
out_shape = (batch_size, out_channels, 224, 224)
out = module.get_output(0, tvm.nd.empty(out_shape))
out_cuda = out.numpy()

输出结果:

/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead."target_host parameter is going to be deprecated. "

生成的伪代码应如下。注意 bias add,batch normalization 和 ReLU activation 是如何融合到卷积核中的。 TVM 从这个表示中生成一个单一的融合内核。

produce tensor {// attr [iter_var(blockIdx.z, , blockIdx.z)] thread_extent = 1// attr [compute] storage_scope = "local"allocate compute[float32 * 32]// attr [pad_temp.shared] storage_scope = "shared"allocate pad_temp.shared[float32 * 180]// attr [placeholder.shared] storage_scope = "shared"allocate placeholder.shared[float32 * 144]// attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = 28// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 14// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16produce compute {compute[0] = 0.000000fcompute[1] = 0.000000fcompute[2] = 0.000000fcompute[3] = 0.000000fcompute[4] = 0.000000fcompute[5] = 0.000000fcompute[6] = 0.000000fcompute[7] = 0.000000fcompute[8] = 0.000000fcompute[9] = 0.000000fcompute[10] = 0.000000fcompute[11] = 0.000000fcompute[12] = 0.000000fcompute[13] = 0.000000fcompute[14] = 0.000000fcompute[15] = 0.000000fcompute[16] = 0.000000fcompute[17] = 0.000000fcompute[18] = 0.000000fcompute[19] = 0.000000fcompute[20] = 0.000000fcompute[21] = 0.000000fcompute[22] = 0.000000fcompute[23] = 0.000000fcompute[24] = 0.000000fcompute[25] = 0.000000fcompute[26] = 0.000000fcompute[27] = 0.000000fcompute[28] = 0.000000fcompute[29] = 0.000000fcompute[30] = 0.000000fcompute[31] = 0.000000ffor (rc.outer, 0, 3) {produce pad_temp.shared {// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16if (likely(((threadIdx.z*15) < (60 - threadIdx.x)))) {if (likely((threadIdx.x < 15))) {pad_temp.shared[(((((threadIdx.z*15) + threadIdx.x)/60)*180) + ((((((threadIdx.z*15) + threadIdx.x)/6) % 10)*18) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))] = tvm_if_then_else((((((1 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)))) && ((1 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((threadIdx.z*15) + threadIdx.x)/60)*9408))*16) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) + (((((threadIdx.z*15) + threadIdx.x)/6) % 10)*224)) + -225)], 0.000000f)pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*224)) + -225)], 0.000000f)pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*224)) + -225)], 0.000000f)}}}produce placeholder.shared {// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16if (likely(((threadIdx.z*4) < (16 - (threadIdx.x/3))))) {if (likely(((threadIdx.z*12) < (48 - threadIdx.x)))) {if (likely((threadIdx.x < 12))) {placeholder.shared[(((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3)] = placeholder[(((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3)]placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 1)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 1)]placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 2)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 2)]}}}}compute[0] = (compute[0] + (pad_temp.shared[threadIdx.x]*placeholder.shared[(threadIdx.z*36)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[(threadIdx.z*36)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[(threadIdx.z*36)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[(threadIdx.z*36)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[(threadIdx.z*36)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[(threadIdx.z*36)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[(threadIdx.z*36)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[(threadIdx.z*36)]))compute[8] = (compute[8] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 9)]))compute[16] = (compute[16] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 18)]))compute[24] = (compute[24] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 27)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 1)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 10)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 19)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 28)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 2)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 11)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 20)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 29)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 3)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 12)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 21)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 30)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 4)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 13)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 22)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 31)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 5)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 14)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 23)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 32)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 6)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 15)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 24)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 33)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 7)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 16)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 25)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 34)]))compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 8)]))compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 17)]))compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 26)]))compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 35)]))compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 35)]))}}tensor[(((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x)] = max(((compute[0]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 224)] = max(((compute[1]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 448)] = max(((compute[2]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 672)] = max(((compute[3]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 896)] = max(((compute[4]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1120)] = max(((compute[5]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1344)] = max(((compute[6]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1568)] = max(((compute[7]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50176)] = max(((compute[8]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50400)] = max(((compute[9]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50624)] = max(((compute[10]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50848)] = max(((compute[11]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51072)] = max(((compute[12]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51296)] = max(((compute[13]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51520)] = max(((compute[14]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51744)] = max(((compute[15]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100352)] = max(((compute[16]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100576)] = max(((compute[17]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100800)] = max(((compute[18]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101024)] = max(((compute[19]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101248)] = max(((compute[20]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101472)] = max(((compute[21]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101696)] = max(((compute[22]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101920)] = max(((compute[23]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150528)] = max(((compute[24]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150752)] = max(((compute[25]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150976)] = max(((compute[26]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151200)] = max(((compute[27]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151424)] = max(((compute[28]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151648)] = max(((compute[29]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151872)] = max(((compute[30]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 152096)] = max(((compute[31]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)
}

将 cuDNN 用于卷积层

将选项 “-libs=cudnn” 附加到 target 字符串,从而用 cuDNN 将卷积核替换为 cuDNN。

net, params = testing.create_workload(simple_net)
target = "cuda -libs=cudnn" # use cudnn for convolution
lib = relay.build_module.build(net, target, params=params)dev = tvm.device(target, 0)
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
module = runtime.GraphModule(lib["default"](dev))
module.set_input("data", data)
module.run()
out_shape = (batch_size, out_channels, 224, 224)
out = module.get_output(0, tvm.nd.empty(out_shape))
out_cudnn = out.numpy()

输出结果:

/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead."target_host parameter is going to be deprecated. "

注意,若用 cuDNN,Relay 无法将卷积与其后面的层融合。因为层融合发生在 TVM internal representation(IR)级别。 Relay 将外部库视为黑盒,因此无法将它们与 TVM IR 融合。

下面的伪代码显示了 cuDNN 卷积 + bias add + batch norm + ReLU 变成了两个计算阶段,一个用于 cuDNN 调用,另一个用于其余操作。

// attr [y] storage_scope = "global"
allocate y[float32 * 802816]
produce y {// attr [0] extern_scope = 0tvm_call_packed("tvm.contrib.cudnn.conv2d.forward", 1, 0, 1, 1, 1, 1, 1, 1, 1, tvm_stack_make_array(placeholder, tvm_stack_make_shape(1, 3, 224, 224), 0, 4, 0.000000f, 0), tvm_stack_make_array(placeholder, tvm_stack_make_shape(16, 3, 3, 3), 0, 4, 0.000000f, 0), tvm_stack_make_array(y, tvm_stack_make_shape(1, 16, 224, 224), 0, 4, 0.000000f, 0))
}
produce tensor {// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 256// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 512for (ax0.ax1.fused.ax2.fused.ax3.fused.outer, 0, 7) {if (likely(((blockIdx.x*512) < ((802816 - (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072)) - threadIdx.x)))) {tensor[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))] = max(((y[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))]*placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]) + placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]), 0.000000f)}}
}

验证结果

检查两次运行的结果是否匹配。

tvm.testing.assert_allclose(out_cuda, out_cudnn, rtol=1e-5)

结论

本教程介绍了 cuDNN 与 Relay 的使用,此外还支持 cuBLAS。若启用了 cuBLAS,它将在全连接层(relay.dense)内使用。若要用 cuBLAS,请将 target 字符串设置为 “cuda -libs=cublas”。也可以将 cuDNN 和 cuBLAS 与 “cuda -libs=cudnn,cublas” 一起使用。

对于 ROCm 后端,支持 MIOpen 和 rocBLAS。将 target 设置为 “rocm -libs=miopen,rocblas” 以启用它们。

使用外部库的注意事项:

首先,使用外部库可能会限制 TVM 和 Relay 的使用。例如,MIOpen 目前只支持 NCHW 布局和 fp32 数据类型,因此不能在 TVM 中使用其他布局或数据类型。

其次,外部库限制了计算图编译期间算子融合的可能性,如上所示。TVM 和 Relay 旨在通过联合算子级别和计算图级别优化,在各种硬件上实现最佳性能。为了实现这个目标,应该继续为 TVM 和 Relay 开发更好的优化,同时在必要时使用外部库回退到现有实现。

下载 Python 源代码:using_external_lib.py

下载 Jupyter Notebook:using_external_lib.ipynb

这篇关于【TVM 教程】在 Relay 中使用外部库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138775

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti