基于Python的机器学习系列(25):使用PyTorch处理数据集

2024-09-05 05:36

本文主要是介绍基于Python的机器学习系列(25):使用PyTorch处理数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在使用PyTorch进行深度学习之前,数据处理是关键的一步。本篇将介绍如何使用PyTorch处理数据集,特别是如何加载和分割数据集。

从文件加载数据

        首先,我们可以使用pandas库读取CSV文件,并将数据转换为PyTorch张量。以下是一个示例:

import pandas as pddf = pd.read_csv('data/iris.csv')
df.head()  # 显示数据的前几行

        该示例加载了著名的Iris数据集,该数据集包含150个样本,每个样本有4个特征和一个标签。特征包括花萼长度、花萼宽度、花瓣长度和花瓣宽度,标签则是三个Iris物种的名称。

使用经典方法构建训练/测试数据

        在介绍PyTorch的DatasetDataLoader类之前,我们先看一下如何使用sklearn库进行训练和测试数据的分割:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoderle = LabelEncoder()df = pd.read_csv('data/iris.csv')
X = df.drop(['Id', 'Species'], axis=1).values
y = le.fit_transform(df['Species'].values)
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=33)X_train = torch.FloatTensor(train_X)
X_test  = torch.FloatTensor(test_X)
y_train = torch.LongTensor(train_y).reshape(-1, 1)
y_test  = torch.LongTensor(test_y).reshape(-1, 1)print(f'Training size: {len(y_train)}')
labels, counts = y_train.unique(return_counts=True)
print(f'Labels: {labels}\nCounts: {counts}')

        在这个示例中,我们首先使用LabelEncoder对标签进行编码,然后使用train_test_split将数据分割为训练集和测试集。最后,将这些数据转换为PyTorch的张量,并检查训练数据的标签分布。

使用PyTorch的DatasetDataLoader

        为了更高效地处理数据,PyTorch提供了DatasetDataLoader类,这些工具可以简化数据加载和批处理过程。在接下来的章节中,我们将深入探讨如何使用这些类来管理数据集。

总结

        本篇介绍了如何从文件中加载数据,并使用经典方法进行数据分割。掌握这些基本步骤是使用PyTorch进行深度学习的前提。接下来,我们将进一步探讨PyTorch中的Gradients。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(25):使用PyTorch处理数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138090

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand