本文主要是介绍阅读笔记(五)多线程无锁的C++实现《Lock-Free Data Structures》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. 前言
本文介绍使用C++实现多线程中无锁算法的实现和优化过程。
2. 无锁&CAS
在多线程程序中,加锁是一种必要的手段,由于保证数据操作的正确性(原子性)。但是这也在很多时候带来了性能的极度下降,因为所有共享数据的操作均需要加锁,有些时候会严重影响性能,比如当读键盘或者一些较慢的I/O操作时,锁会延误了其他线程的操作。更糟糕的是,不当操作可能会带来死锁。
首先介绍最经典的无锁操作:compare-and-swap (CAS) 操作。CAS比较内存地址是否满足要求,若成功则写入value,这整个过程是原子性的。
template <class T>
bool CAS(T* addr, T expected, T value) {if (*addr == expected) {*addr = value;return true;}return false;
}
3. WRRM Map
WRRM (Write Rarely Read Many) 是一种常见的情况,即大多数读、很少写的操作。我们可以通过std::map或者std::unordered_map来实现(区别见这里),单同时asso_vector也是一个比较好的选择。在这里我们用Map<key, value>
代替,具体实现可以根据需求修改,通常我们的做法如下所示:
// A locking implementation of WRRMMap
template <class K, class V>
class WRRMMap {Mutex mtx_;Map<K, V> map_;
public:V Lookup(const K& k) {Lock lock(mtx_);return map_[k];}void Update(const K& k,const V& v) {Lock lock(mtx_);map_[k] = v;}
};
这里我们尝试去掉互斥锁结构,改用CAS判断是否可以修改。这里代码改动遵循如下原则
- 读操作本身不需要加锁
- Updates可以使用CAS进行判断,当CAS失败则一直尝试
- 由于CAS可以交换的字节数有限,WRRMMap存储的是指针Map而不是整个Map变量
// 1st lock-free implementation of WRRMMap
// Works only if you have GC
template <class K, class V>
class WRRMMap {Map<K, V>* pMap_;
public:V Lookup (const K& k) {//Look, ma, no lockreturn (*pMap_) [k];}void Update(const K& k,const V& v) {Map<K, V>* pNew = 0;do {Map<K, V>* pOld = pMap_;delete pNew;pNew = new Map<K, V>(*pOld);(*pNew) [k] = v;} while (!CAS(&pMap_, pOld, pNew));// DON'T delete pMap_;}
};
但是这种设计存在一些问题:
- 当多线程并行发调用Update的时候,这里会由于循环造成可能非常久的时延,在这方面需要继续改进。
- 旧数据pMap_没有删除
首先对数据进行包裹和修改。其中Data第一项记录数据,第二项为引用次数。
template <class K, class V>
class WRRMMap {typedef std::pair<Map<K, V>*,unsigned> Data;Data data_;...
};
修改Lookup函数
V Lookup(const K& k) {Data old;Data fresh;do {old = data_;fresh = old;++fresh.second;} while (CAS(&data_, old, fresh));V temp = (*fresh.first)[k];do {old = data_;fresh = old;--fresh.second;} while (CAS(&data_, old, fresh));return temp;
}
修改Update函数
void Update(const K& k,const V& v) {Data old;Data fresh;old.second = 1;fresh.first = 0;fresh.second = 1;Map<K, V>* last = 0;do {old.first = data_.first;if (last != old.first) {delete fresh.first;fresh.first = new Map<K, V>(old.first);fresh.first->insert(make_pair(k, v));last = old.first;}} while (!CAS(&data_, old, fresh));delete old.first; // whew
}
3. 参考文献
[1] Alexandrescu, Andrei. Modern C++ Design, Addison-Wesley Longman, 2001.
[2] Alexandrescu, Andrei. “Generic:yasli::vector Is On the Move,” C/C++ Users Journal, June 2004.
[3] Butenhof, D.R. Programming with POSIX Threads, Addison-Wesley, 1997.
[4] Detlefs, David L., Paul A. Martin, Mark Moir, and Guy L. Steele, Jr. “Lock-free Reference Counting,” Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, pages 190-199, ACM Press, 2001. ISBN 1-58113-383-9.
[5] Gamma, Erich, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns: Elements of Resusable Object-Oriented Software, Addison-Wesley, 1995.
[6] Meyers, Scott and Andrei Alexandrescu. “The Perils of Double-Checked Locking.” Dr. Dobb’s Journal, July 2004.
[7] Maged, Michael M. “Scalable Lock-free Dynamic Memory Allocation,” Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, pages 35-46. ACM Press, 2004. ISBN 1-58113-807-5.
[8] Robison, Arch. “Memory Consistency & .NET,” Dr. Dobb’s Journal, April 2003.
[9] Maged, Michael M. “CAS-Based Lock-Free Algorithm for Shared Deques,” The Ninth Euro-Par Conference on Parallel Processing, LNCS volume 2790, pages 651-660, August 2003.
这篇关于阅读笔记(五)多线程无锁的C++实现《Lock-Free Data Structures》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!