leetcode解题思路分析(五十二)447 - 453 题

2024-09-05 04:58

本文主要是介绍leetcode解题思路分析(五十二)447 - 453 题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 回旋镖的数量
    给定平面上 n 对 互不相同 的点 points ,其中 points[i] = [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序)。返回平面上所有回旋镖的数量。

使用哈希表存储每个点到其他点的距离,如果距离相等则可以构成。

class Solution {
public:int numberOfBoomerangs(vector<vector<int>>& points) {unordered_map<double, int> p_map;int count = 0;for (int i = 0; i < points.size(); ++i) {// 记得计算下一个点前要先把哈希表清空p_map.clear();for (int j = 0; j < points.size(); ++j) {double dis = sqrt(pow(points[i][0] - points[j][0], 2) + pow(points[i][1] - points[j][1], 2));p_map[dis]++;count += (p_map[dis] - 1) * 2;}}return count;}
};
  1. 找到所有数组中消失的数字
    给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。找到所有在 [1, n] 范围之间没有出现在数组中的数字。

和前面的题目一样的做法,只要给倍数即可作为原地标记

class Solution {
public:vector<int> findDisappearedNumbers(vector<int>& nums) {int size = nums.size();      vector<int> ret;for (auto i : nums){nums[(i - 1) % size] += size;}for (int i = 0; i < size; i++){if (nums[i] <= size)ret.push_back(i + 1);}return ret;}
};
  1. 序列化和反序列化二叉搜索树
    设计一个算法来序列化和反序列化 二叉搜索树 。 对序列化/反序列化算法的工作方式没有限制。 您只需确保二叉搜索树可以序列化为字符串,并且可以将该字符串反序列化为最初的二叉搜索树。

二叉搜索树能只够通过前序序列或后序序列构造,是因为以下两个因素:
二叉树可以通过前序序列或后序序列和中序序列构造。
二叉搜索树的中序序列是递增排序的序列,inorder = sorted(preorder)。
说明我们只需要直到了前序序列或后序序列相当于我们也知道了中序序列,可以通过排序获得

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/class Codec {
public:// Encodes a tree to a single string.string serialize(TreeNode* root) {ostringstream ss;serialize(root, ss);return ss.str();}TreeNode* deserialize(string data) {istringstream ss(data);return deserialize(ss);}private:void serialize(TreeNode* root, ostringstream& ss) {if (!root) {ss << "# "; // Note: cannot miss space after #, stringstream need it to workreturn;}ss << to_string(root->val) << " ";serialize(root->left, ss);serialize(root->right, ss);}TreeNode* deserialize(istringstream& ss) {TreeNode* root;string str;ss >> str;if (str == "#") {root = nullptr;} else {root = new TreeNode(stoi(str));root->left = deserialize(ss);root->right = deserialize(ss);}return root;}
};// Your Codec object will be instantiated and called as such:
// Codec* ser = new Codec();
// Codec* deser = new Codec();
// string tree = ser->serialize(root);
// TreeNode* ans = deser->deserialize(tree);
// return ans;
  1. 删除二叉搜索树中的节点
    给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

找不到则直接返回,找到了的话则有以下情况 1. 如果是叶子则直接删除即可。2. 如果左、右子树有一个为空,则删除接上即可。3. 如果都不为空,则将左子树放到右子树最左边下面接上,然后右子树替换上即可(除此之外,还可以用右儿子的最左叶子和要删除的节点交换,以其作为新的根节点)

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点if (root->left == nullptr) return root->right; // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) return root->left; // 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {  TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) { cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}}if (root->val > key) root->left = deleteNode(root->left, key);if (root->val < key) root->right = deleteNode(root->right, key);return root;}
};
  1. 根据字符出现频率排序
    给定一个字符串,请将字符串里的字符按照出现的频率降序排列。

如果想少用内存,则可以仅用一个哈希表计数,然后字符串原地排序。如果想更快,则可以用一个堆存储再输出

class Solution {
public:string frequencySort(string s) {unordered_map<char, int> ump;for (const auto &c : s) {++ump[c];}sort(s.begin(), s.end(), [&](char &a, char &b) { return ump[a] > ump[b] || (ump[a] == ump[b] && a < b); });return s;}
};
class Solution {
public:string frequencySort(string s) {unordered_map<char, int> ump;for (const auto &c : s) {++ump[c];}priority_queue<pair<int, char>> pq;for (const auto &m : ump) {pq.push({m.second, m.first});}        string ret;while (!pq.empty()) {auto t = pq.top(); pq.pop();ret.append(t.first, t.second);}return ret;}
};
  1. 用最少数量的箭引爆气球
    给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

但凡区间合并问题,都可以用贪心算法求解。可以按start或者end排序,然后遍历一遍统计即可。

class Solution {
public:int findMinArrowShots(vector<vector<int>>& points) {if (points.size() <= 1) {return points.size();}sort(points.begin(), points.end(), [](const vector<int>& a, const vector<int>& b) {return a[1] < b[1];});// 发射点设置为区间最右侧的点int pos = points[0][1];int arrows = 1;for (int i = 1; i < points.size(); i++) {auto curr = points[i];if (curr[0] > pos) {pos = curr[1];++arrows;}}return arrows;}
};
  1. 最小移动次数使数组元素相等

本题可用动态规划求解:先排序,然后每次根据dp[i] = dp[i - 1] + a[i] - a[i - 1]求解。 更优的做法是数学法:将除了一个元素之外的全部元素+1,等价于将该元素-1,因为我们只对元素的相对大小感兴趣。因此,该问题简化为需要进行的减法次数。显然,我们只需要将所有的数都减到最小的数即可。

class Solution {
public:int minMoves(vector<int>& nums) {int moves = 0, minimu = INT_MAX;for (int i = 0; i < nums.size(); i++) {minimu = min(minimu, nums[i]);}for (int i = 0; i < nums.size(); i++) {moves += nums[i] - minimu;}return moves;}
};

这篇关于leetcode解题思路分析(五十二)447 - 453 题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138009

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &