一文说清什么是数据仓库

2024-09-05 04:44
文章标签 一文 数据仓库

本文主要是介绍一文说清什么是数据仓库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 数据仓库的概念

数据仓库的概念可以追溯到20世纪80年代,当时IBM的研究人员开发出了“商业数据仓库”。本质上,数据仓库试图提供一种从操作型系统到决策支持环境的数据流架构模型。

目前对数据仓库(Data Warehouse)的标准定义,业界普遍比较认可的是由数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出:数据仓库是一个面向主题的、集成的、相对稳定的(非易失的)、反映历史变化的数据集合,通常用于支持企业管理决策。这个定义有些复杂并且难以理解。下面我们将它分解开来进行说明。

  • 面向主题

传统的操作型系统是围绕组织的功能性应用进行组织的,而数据仓库是面向主题的。主题是一个抽象概念,简单地说就是与业务相关的数据的类别,每一个主题基本对应一个宏观的分析领域。数据仓库被设计成辅助人们分析数据。例如,一个公司要分析销售数据,就可以建立一个专注于销售的数据仓库,使用这个数据仓库,就可以回答类似于“去年谁是我们这款产品的最佳用户”这样的问题。这个场景下的销售,就是一个数据主题,而这种通过划分主题定义数据仓库的能力,就使得数据仓库是面向主题的。主题域是对某个主题进行分析后确定的主题的边界,如客户、销售、产品都是主题域的例子。

  • 集成

集成的概念与面向主题是密切相关的。还用销售的例子,假设公司有多条产品线和多种产品销售渠道,而每个产品线都有自己独立的销售数据库。此时要想从公司层面整体分析销售数据,必须将多个分散的数据源统一成一致的、无歧义的数据格式后,再放置到数据仓库中。因此数据仓库必须能够解决诸如数据分散存储、产品命名冲突、计量单位不一致等问题。当完成了这些数据整合工作后,该数据仓库就可称为是集成的。

  • 随时间变化

为了发现业务变化的趋势、存在的问题,或者新的机会,需要分析大量的历史数据。这与联机事务处理(OLTP)系统形成鲜明的对比。联机事务处理反映的是当前时间点的数据情况,要求高性能、高并发和极短的响应时间,出于这样的需求考虑,联机事务处理系统中一般都将数据依照活跃程度分级,把历史数据迁移到归档数据库中。而数据仓库关注的是数据随时间变化的情况,并且能反映在过去某个时间点的数据是怎样的。换句话说,数据仓库中的数据是反映了某一历史时间点的数据快照,这也就是术语“随时间变化”的含义。当然,任何一个存储结构都不可能无限扩展,数据也不可能只入不出地永久驻留在数据仓库中,它在数据仓库中也有自己的生命周期。到了一定时候,数据会从数据仓库中移除。移除的方式可能是将细节数据汇总后删除、将老的数据转储到大容量介质后删除和直接物理删除等。

  • 非易失

非易失指的是,一旦进入到数据仓库中,数据就不应该再有改变。操作型环境中的数据一般都会频繁更新,而在数据仓库环境中一般并不进行数据更新。当改变的操作型数据进入数据仓库时会产生新的记录,这样就保留了数据变化的历史轨迹。也就是说,数据仓库中的数据基本是静态的。这是一个不难理解的逻辑概念。数据仓库的目的就是要根据曾经发生的事件进行分析,如果数据是可修改的,将使历史分析变得没有意义。

图片

对数据仓库的概念再来做一个总结,我们抓住两个重点:第一,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;第二,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

02 数据仓库技术发展历程

图片

03 为什么要建立数据仓库?

现在,大家应该已经熟悉并了解了数据仓库的概念,那么数据仓库里的数据从哪里来呢?通常数据仓库的数据来自各个业务应用系统。业务系统中的数据形式多种多样,可能是Oracle、MySQL、SQL Server等关系数据库里的结构化数据,可能是文本、CSV等平面文件或Word、Excel文档中的非结构化数据,还可能是HTML、XML等自描述的半结构化数据。这些业务数据经过一系列的数据抽取、转换、清洗,最终以一种统一的格式装载进数据仓库。数据仓库里的数据作为分析用的数据源,提供给后面的即席查询、分析系统、数据集市、报表系统、数据挖掘系统等。

从以上描述可以看到,从存储的角度看,数据仓库里的数据实际上已经存在于业务应用系统中,那么为什么不能直接操作业务系统中的数据用于分析,而要使用数据仓库呢?其实这个问题我们可以反过来想一下,不建立数据仓库,数据分析时直接访问业务系统中的数据会存在哪些问题?自然就会有答案了。

我们来列举一些直接访问业务系统无法工作的业务场景:

  • 某些业务数据由于安全或其他因素不能直接访问。

  • 很难建立和维护需要汇总来源于多个业务系统数据的报表。

  • 业务系统的数据格式,如日期、数字的格式不统一。

  • 业务系统的表结构为事务处理性能而优化,有时并不适合查询与分析。

  • 没有适当的位置存储元数据。

  • 通常事务处理的优先级比分析系统高,所以如果分析系统和事务处理运行在同一硬件之上,分析系统往往性能很差。

  • 有误用业务数据的风险且极有可能影响业务系统的性能。

尽管需要增加软硬件的投入,但建立独立数据仓库与直接访问业务数据相比,无论是成本还是带来的好处,这样做都是值得的。随着处理器和存储成本的逐年降低,数据仓库方案的优势更加明显,在经济上也更具可行性。

04 数据仓库价值

图片

  • 提供全面准确的业务洞察:通过对多源数据的整合和分析,数据仓库能够帮助企业获得全面准确的业务洞察,发现隐藏在数据中的规律和趋势。

  • 支持决策制定:数据仓库能够为企业的决策制定提供有力支持,通过多维分析和可视化报表,让企业能够更直观地了解业务状况,制定更准确的战略。

  • 增强企业竞争力:通过数据仓库对市场的洞察力和预测力,企业能够更灵活地应对市场变化,提高竞争力。

  • 降低运营风险:通过对历史数据的分析,数据仓库能够揭示出业务发展过程中的问题和风险,帮助企业及时调整策略,降低运营风险。

05 数据仓库应用场景

针对不同需求的用户 , 数据仓库可以开发如下几种应用:即席查询系统(Ad hoc query)、联机分析处理系统(OLAP)、领导信息系统(Executive Information System)、业务流程重整(Business Process Reengineering)。

数据仓库被广泛应用于各大行业:

  • 电商行业:在电商行业中,数据仓库可用于对用户行为、购买偏好、流量分布等进行深入分析,为企业提供个性化推荐和营销策略。

  • 金融行业:在金融行业中,数据仓库可用于对客户画像、风险评估、欺诈检测、市场趋势等进行分析,帮助金融机构做出更准确的信贷和投资决策。

  • 医疗行业:在医疗行业中,数据仓库可用于对病患画像、疾病分布、治疗效果等进行分析,为医疗机构提供更精确的疾病诊断和治疗方案。

  • 电信行业:在电信行业中,数据仓库可用于客户流失预测、网络性能监测、个性化服务推荐,帮助企业优化客户服务。

  • 物流行业:在电信行业中,数据仓库可用于路线优化、仓储管理、供应链可视化,帮助企业提高物流效率,降低仓储成本。

  • 制造业:在制造业中,数据仓库可用于对产品生产流程、设备运行状况、质量控制等进行分析,提高生产效率和产品质量。

这篇关于一文说清什么是数据仓库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137984

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风格和规模似乎已经过时。近来,Meta、谷歌和英伟达等AI巨头纷纷发布开源模型,附带发布详尽的论文或报告,包括Llama 3.1、Nemotron 340

一文说清什么是AI原生(AI Native)应用以及特点

引言:智能新纪元 如今,走在街头,哪儿不被智能科技包围?智能音箱、自动驾驶汽车、聊天机器人......这些都在用不同的方式提升我们的生活体验。然而,究竟什么才能称得上“AI原生应用”呢? 什么是AI原生?   AI原生不仅仅是简单地引入人工智能功能。真正的AI原生应用犹如一个智慧的“大脑”,它的每一个决策都依赖于深度学习与数据分析。以Siri为例,它通过学习用户的习惯和需求,提供个性化的

数据仓库理论知识

1、数据仓库的概念          数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持; 2、数据仓库的主要特征 数据仓库是面向主题性(Subject-Oriented )、集成性(Integrated)、非易

世界公认十大护眼灯数据出炉!一文看懂孩子用的台灯哪个牌子好

近年来,随着科技的迅猛发展,诸如智能手机、电脑等电子设备在工作、学习及娱乐中的应用日益广泛,人们对这些设备的依赖程度也随之加深。然而,长时间面对屏幕不可避免地给眼睛带来伤害,如眼疲劳、干燥甚至近视等问题。因此,市场对能够缓解眼疲劳的照明产品的需求日益增长。这类护眼照明产品通常采用无频闪、无紫外线辐射等技术,旨在减少对眼睛的潜在危害,有效保护视力健康,并降低眼疾的发生率。随着护眼台灯的不断创新进步,

一文详解go底层原理之垃圾回收

1 前置知识 1.1 三色回收法 三色回收法在gov1.5版本时是主流的gc方式 简单介绍一下流程: 暂停程序执行流程(开启STW)将新创建的对象全部标记为白色从根节点开始遍历,把遍历到的第一层全部改为灰色遍历一次灰色集合,将灰色集合引用对象变为黑色重复上述步骤,知道没有灰色对象清除白色对象结束STW 1.2 STW 上述1.1所说的STW就是指的stop the world,简单的说

数据仓库: 6- 数据仓库分层

目录 6- 数据仓库分层6.1 简介6.1.1 数据仓库分层的优势6.1.2 常见的数据仓库分层模型6.1.2.1 四层模型6.1.2.2 三层模型 6.1.3 数据仓库分层原则6.1.4 数据仓库分层示例6.1.5 总结 6.2 ODS(操作数据存储)层6.2.1 ODS 层的主要功能6.2.2 ODS 层的特点6.2.3 ODS 层的设计要点6.2.4 ODS 层的应用场景6.2.5 总

Apache Spark3.0什么样?一文读懂Apache Spark最新技术发展与展望

简介: 阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和3.0+ 展望》的全面解析,为大家介绍了Spark在整体IT基础设施上云背景下的新挑战和最新技术进展,同时预测了Spark 3.0即将重磅发布的新功能。 2019阿里云峰会·上海开发者大会于7月24日盛大开幕,在本次峰会的开源大数据专场上,阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和

数据仓库系统的实现与使用(含OLAP重点讲解)

系列文章: 《一文了解数据库和数据仓库》 《DB数据同步到数据仓库的架构与实践》 《数据湖(Data Lake)-剑指下一代数据仓库》 《从0建设离线数据仓库》 《基于Flink构建实时数据仓库》 阅读目录 前言创建数据仓库ETL:抽取、转换、加载OLAP/BI工具数据立方体(Data Cube)OLAP的架构模式小结 前言 数据仓库是数据仓库开发中最核心的部分。然而完整的数据仓库系统还会涉及