【赵渝强老师】大数据生态圈中的组件

2024-09-05 04:36

本文主要是介绍【赵渝强老师】大数据生态圈中的组件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

  大数据体系架构中的组件非常多,每个组件又属于不同的生态圈系统。从最早的Hadoop生态圈体系开始,逐步有了Spark生态圈体系和Flink生态圈体系。因此在学习大数据之前有必要了解一下每一个生态圈体系中具体包含哪些组件,以及它们的作用又是什么。
  视频讲解如下:

大数据生态圈中的组件

【赵渝强老师】大数据生态圈中的组件

一、大数据的数据存储组件

  在大数据体系中使用了分布式存储的方式解决了海量数据的存储问题。它分为离线数据存储和实时数据存储。

(一)大数据离线数据存储组件

  大数据离线数据存储组件主要包括:HDFS、HBase和Hive。这三个组件都属于Hadoop生态圈体系。下面分别进行介绍。

  • HDFS
      它的全称是Hadoop Distributed File System,它是Hadoop分布式文件系统,用于解决大数据的存储问题。HDFS源自于Google的GFS论文,可用于运行在低成本的通用硬件上,是一个具有容错的文件系统。

  • HBase
      基于HDFS之上的分布式列式存储NoSQL数据库,起源于Google的BigTable思想。由于HBase的底层是HDFS,因此HBase中创建的表和表中数据最终都是存储在HDFS上。HBase的核心是列式存储,它适合执行查询操作。

  • Hive
      Hive是基于HDFS之上的数据仓库,支持标准的SQL语句。默认情况下,Hive的执行引擎是MapReduce。Hive可以把一条标准的SQL转换成是MapReduce任务运行在Yarn之上。

提示:Hive的执行引擎也可以是Spark,即:Hive on Spark。

(二)大数据实时数据存储组件

  大数据实时数据存储组件主要使用消息系统Kafka。

  • Kafka
      Kafka是由Apache软件基金会开发的一个开源流处理平台,它是一种高吞吐量的分布式发布订阅消息系统。Kafka的诞生是为了解决LinkedIn的数据管道问题。起初LinkedIn采用ActiveMQ进行数据交换。在2010年前后,Active MQ远远无法满足LinkedIn对数据传递系统的要求,经常由于各种缺陷导致消息阻塞或服务无法正常访问。为了解决这个问题,LinkedIn决定研发自己的消息传递系统。当时LinkedIn的首席架构师Jay Kreps组织团队进行消息传递系统的研发,进而有了现在的Kafka消息系统。

二、大数据的数据计算组件

  大数据生态圈提供了各种计算引擎。通过使用这些计算引擎来执行批处理的离线计算和流处理的实时计算;同时也提供了各种数据分析引擎,用于支持SQL语句

(一)大数据批处理的离线计算组件

  大数据批处理的离线计算组件主要包括:MapReduce、Spark Core和Flink DataSet。下面分别进行介绍。

  • MapReduce
      MapReduce是一种分布式计算模型,用以进行大数据量的计算,它是一种离线计算处理模型。MapReduce通过Map和Reduce两个阶段的划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。通过MapReduce既可以处理HDFS中的数据,也可以处理HBase中的数据。

提示:在Hadoop的安装包中已经集成了HDFS与Yarn。因此Hadoop安装成功后,可以直接执行MapReduce任务处理HDFS的数据。

  • Spark Core
      Spark Core是Spark的核心部分,也是Spark执行引擎。在Spark中执行的所有计算都是由Spark Core完成,它是一个种离线计算引擎。Spark Core提供了SparkContext访问接口用于提交执行Spark任务。通过该访问接口既可以开发Java程序,也可以开发Scala程序来分析和处理数据。SparkContext也是Spark中最重要的一个对象。

提示:Spark中的所有计算都是Spark Core离线计算,因此Spark生态圈体系中不存在真正的实时计算。

  • Flink DataSet
      Flink DataSet API是Flink中用于处理有边界数据流的功能模块,其本质就是执行批处理的离线计算,这一点与Hadoop中的MapReduce和Spark中的Spark Core其实是一样的。下表1列出了Flink DataSet API中的一些常见的算子。
    在这里插入图片描述

(二)大数据流处理的实时计算组件

  大数据流处理的实时计算组件主要包括:Spark Streaming和Flink DataStream。下面分别进行介绍。

  • Spark Streaming
      Spark Streaming是核心Spark API的扩展,它可实现可扩展、高吞吐量、可容错的实时数据流处理。但是Spark Streaming底层的执行引擎依然是Spark Core,这就决定了Spark Streaming并不是真正的流处理引擎,它是通过时间的采样间隔把流式数据编程小批量数据进行处理,其本质任然是批处理的离线计算。Spark Streaming访问接口是StreamingContext。

  • Flink DataStream
      Flink DataStream API可以从多种数据源创建DataStreamSource,如:消息队列Kafka、文件流和Socket连接等等;然后,通过Transformation的转换操作进行流式数据的处理;最后由Sink组件将处理的结果进行输出。

(三)大数据数据分析组件

  为了支持使用SQL处理大数据便有了各种大数据分析引擎,主要包括:Hive、Spark SQL、Flink SQL等下面分别进行介绍。

  • Hive
      Hive是基于HDFS之上的数据仓库,支持标准的SQL语句。默认情况下,Hive的执行引擎是MapReduce。Hive可以把一条标准的SQL转换成是MapReduce任务运行在Yarn之上。
    提示:Hive的执行引擎也可以是Spark,即:Hive on Spark。

  • Spark SQL
      Spark SQL是Spark用来处理结构化数据的一个模块,它的核心数据模型是DataFrame,其访问接口是SQLContext。这里可以把DataFrame理解成是一张表。当DataFrame创建成功后,Spark SQL可支持DSL语句和SQL语句来分析处理数据。由于Spark SQL底层的执行引擎是Spark Core,因此Spark SQL执行的本质也是执行的一个Spark Core任务。

  • Flink Table & FlinkSQL
      与Hadoop的Hive和Spark SQL类似,在Flink的生态圈体系中也提供了两个关系型操作的API:Table API 和SQL。Flink Table API 是用于Scala 和Java 语言的查询API,允许以非常直观的方式组合关系运算符的查询,如 select、filter 和 join;Flink SQL API支持的是实现了标准SQL的Apache Calcite。通过这套接口,能够使用SQL语句处理DataSet数据流和DataStream数据流。

这篇关于【赵渝强老师】大数据生态圈中的组件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137964

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Vue中组件之间传值的六种方式(完整版)

《Vue中组件之间传值的六种方式(完整版)》组件是vue.js最强大的功能之一,而组件实例的作用域是相互独立的,这就意味着不同组件之间的数据无法相互引用,针对不同的使用场景,如何选择行之有效的通信方式... 目录前言方法一、props/$emit1.父组件向子组件传值2.子组件向父组件传值(通过事件形式)方

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.