Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain

2024-09-05 04:08

本文主要是介绍Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应HDU题目:点击打开链接

Play with Chain

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4571    Accepted Submission(s): 1859


Problem Description
YaoYao is fond of playing his chains. He has a chain containing n diamonds on it. Diamonds are numbered from 1 to n.
At first, the diamonds on the chain is a sequence: 1, 2, 3, …, n.
He will perform two types of operations:
CUT a b c: He will first cut down the chain from the ath diamond to the bth diamond. And then insert it after the cth diamond on the remaining chain.
For example, if n=8, the chain is: 1 2 3 4 5 6 7 8; We perform “CUT 3 5 4”, Then we first cut down 3 4 5, and the remaining chain would be: 1 2 6 7 8. Then we insert “3 4 5” into the chain before 5th diamond, the chain turns out to be: 1 2 6 7 3 4 5 8.

FLIP a b: We first cut down the chain from the ath diamond to the bth diamond. Then reverse the chain and put them back to the original position.
For example, if we perform “FLIP 2 6” on the chain: 1 2 6 7 3 4 5 8. The chain will turn out to be: 1 4 3 7 6 2 5 8

He wants to know what the chain looks like after perform m operations. Could you help him? 

Input
There will be multiple test cases in a test data. 
For each test case, the first line contains two numbers: n and m (1≤n, m≤3*100000), indicating the total number of diamonds on the chain and the number of operations respectively.
Then m lines follow, each line contains one operation. The command is like this:
CUT a b c // Means a CUT operation, 1 ≤ a ≤ b ≤ n, 0≤ c ≤ n-(b-a+1).
FLIP a b    // Means a FLIP operation, 1 ≤ a < b ≤ n.
The input ends up with two negative numbers, which should not be processed as a case.

Output
For each test case, you should print a line with n numbers. The ith number is the number of the ith diamond on the chain.

Sample Input
  
8 2 CUT 3 5 4 FLIP 2 6 -1 -1

Sample Output
  
1 4 3 7 6 2 5 8

题意:

n个数一开始是1~n顺序排列,有两个操作。

CUT(a, b, c)操作表示把第a到第b个数取下放到新组成的第c个数后面;

FLIP(a, b)操作表示把第a到第b个数翻转;

比如样例: n = 8

1   2   3   4   5   6   7   8  

CUT(3,  5,  4)后数列变成 1   2   6   7   3   4   5   8

FLIP(2,  6)后数列变成1   4   3   7   6   2   5   8

问m次操作后的数列为?


思路:

伸展树的基础操作,区间截断,区间翻转。

区间截断对于CUT(a, b, c)

1)提取区间[a, b]

具体方法:Splay(a - 1, T),Splay(b +1, T->right);即把第a - 1个数旋转到根,把第b + 1个数旋转到根的右儿子;那以根的右儿子的左儿子为根的子树就是所有区间[a, b]内的值;把它剪下。

2)把第c个数旋转到根,把第c + 1个数旋转到根的右儿子;那根的右儿子的左儿子肯定是空的。

3)把剪下的子树接在根的右儿子的左儿子。

区间翻转:对于FLIP(a, b)

1)提取区间[a, b]

2)在左儿子做翻转标志(注意不是简单的赋值为1,而是要做异或操作,即原来是1的标记为0,是0的标记为1)

3)在适当的地方加Push_down向下更新(跟线段树区间更新一样)


首先要明白的一点是二叉树结点的信息是最终中序遍历(一定是按下标先后顺序)输出的值,而不是下标的值;那怎样取下标为a的结点呢?

利用每个结点的sz,它表示以该结点为子树的的所有元素个数(T->sz = T->left->sz + T->right->sz + 1)

从根结点p开始

1)如果(左子树的元素个数加上1(1表示p结点) )sum = p->left->sz + 1;if (sum == a) ,那就找到了,返回p结点

2)sum比a小,说明要往右走(p = p->right);同时a -= sum;跳到步骤1

3)sum比a大,说明要往左走(p = p->right);a无需变动;跳到步骤1


怎样书写Push_down函数

就把左右子树对调,然后取消该结点标记,把两棵子树添加标记。


注意:修改时要注意Push_down的地方,注意父亲指针;注意更新sz;用动态的方法时要注意儿子是否为空。


指针型

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAX(x, y) ((x) > (y) ? (x) : (y))typedef struct TREE
{int data;TREE *fa, *l, *r;int sz; //以该结点为根的树的总结点数bool flag; //翻转标记
}Tree;bool space;void Push_down(Tree *T)
{if(NULL == T) return;//左右子树对调if(T->flag){Tree *tmp;tmp = T->r;T->r = T->l;T->l = tmp;T->flag = 0;if(T->l) T->l->flag ^= 1;if(T->r) T->r->flag ^= 1;}
}void Init(Tree *&T, int n)
{int i;bool k = 0;Tree *cur, *pre;for(i = n + 1; i > -1; i--){cur = (Tree *)malloc(sizeof(Tree));cur->data = i;cur->fa = cur->l = cur->r = NULL;cur->sz = 1;cur->flag = 0;if(k){cur->r = pre;pre->fa = cur;cur->sz = pre->sz + 1;}if(!k) k = 1;pre = cur;}T = cur;
}void PreOrder(Tree *T)
{if(NULL == T) return;printf("%d ", T->data);PreOrder(T->l);PreOrder(T->r);
}void MidOrder(Tree *T, int n)
{if(NULL == T) return;Push_down(T);MidOrder(T->l, n);if(T->data > 0 && T->data < n + 1){if(space) printf(" ");else space = 1;printf("%d", T->data);}MidOrder(T->r, n);
}void R_rotate(Tree *x)
{Tree *y = x->fa;Tree *z = y->fa;Tree *k = x->r;int sx = x->sz, sy = y->sz, sk = 0;if(k) sk = k->sz;y->l = k;x->r = y;if(z){if(y == z->l) z->l = x;else z->r = x;}if(k) k->fa = y;y->fa = x;x->fa = z;y->sz = sy - sx + sk;x->sz = sx - sk + y->sz;
}void L_rotate(Tree *x)
{Tree *y = x->fa;Tree *z = y->fa;Tree *k = x->l;int sx = x->sz, sy = y->sz, sk = 0;if(k) sk = k->sz;y->r = k;x->l = y;if(z){if(y == z->r) z->r = x;else z->l = x;}if(k) k->fa = y;y->fa = x;x->fa = z;y->sz = sy - sx + sk;x->sz = sx - sk + y->sz;
}//寻找第x个数的结点
Tree *FindTag(Tree *T, int x)
{if(NULL == T) return NULL;Push_down(T);Tree *p;p = T;int sum = (p->l ? p->l->sz : 0) + 1;while(sum != x && p){if(sum < x){p = p->r;x -= sum;}else p = p->l;Push_down(p);sum = (p->l ? p->l->sz : 0) + 1;}Push_down(p);return p;
}void Splay(int x, Tree *&T)
{Push_down(T);Tree *p, *X, *end, *new_t;end = T->fa;new_t = T;if(end) new_t = T->fa;X = FindTag(new_t, x);while(X->fa != end){p = X->fa;if(end == p->fa){ //p是根结点if(X == p->l) R_rotate(X);else L_rotate(X);break;}//p不是根结点if(X == p->l){if(p == p->fa->l){R_rotate(p); //LLR_rotate(X); //LL}else{R_rotate(X); //RLL_rotate(X);}}else{if(p == p->fa->r){ //RRL_rotate(p);L_rotate(X);}else{ //LRL_rotate(X);R_rotate(X);}}}T = X;
}void CUT(Tree *&T, int a, int b, int c)
{//取[a,b]Splay(a - 1, T);Splay(b + 1, T->r);//剪[a,b]Tree *tmp;tmp = T->r->l;tmp->fa = NULL;T->r->l = NULL;T->r->sz -= tmp->sz;T->sz -= tmp->sz;//移动第c个数到根结点,第c+1个数到根结点右儿子//这样根结点右儿子的左儿子必然为空,就可以把剪掉的放上去Splay(c, T);Splay(c + 1, T->r);//接[a, b]T->r->l = tmp;tmp->fa = T->r;T->r->sz += tmp->sz;T->sz += tmp->sz;
}void FLIP(Tree *&T, int a, int b)
{//取[a,b]Splay(a - 1, T);Splay(b + 1, T->r);//标记T->r->lT->r->l->flag ^= 1;
}void FreeTree(Tree *T)
{if(NULL == T) return;FreeTree(T->l);FreeTree(T->r);free(T);
}int main()
{//freopen("in.txt", "r", stdin);Tree *T;int n, q, a, b, c;char s[6];while(scanf("%d%d", &n, &q), n >= 0 && q >= 0){space = 0;T = NULL;Init(T, n);while(q--){scanf("%s", s);if('C' == s[0]){scanf("%d%d%d", &a, &b, &c);CUT(T, a + 1, b + 1, c + 1);}else{scanf("%d%d", &a, &b);FLIP(T, a + 1, b + 1);}}MidOrder(T, n);printf("\n");FreeTree(T);}return 0;
}

数组型

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define M 300090
#define nul (1<<30)
int data[M];
int Left[M];
int Right[M];
int fa[M];
int sz[M];
bool flag[M];
bool space;void Init()
{int i;for(i = 0; i < M; i++)Left[i] = Right[i] = fa[i] = nul;
}void Push_down(int T)
{if(nul == T) return;if(flag[T]){int tmp = Right[T];Right[T] = Left[T];Left[T] = tmp;flag[T] = 0;if(nul != Left[T]) flag[Left[T]] ^= 1;if(nul != Right[T]) flag[Right[T]] ^= 1;}
}void Create(int &T, int n)
{bool k = 0;int cur, pre;for(cur = n + 1; cur > -1; cur--){data[cur] = cur;sz[cur] = 1;flag[cur] = 0;if(k){Right[cur] = pre;fa[pre] = cur;sz[cur] = sz[pre] + 1;}if(!k) k = 1;pre = cur;}T = pre;
}void InOrder(int T, int n)
{if(nul == T) return;Push_down(T);InOrder(Left[T], n);if(data[T] > 0 && data[T] < n + 1){if(space) printf(" ");else space = 1;printf("%d", data[T]);}InOrder(Right[T], n);
}void PreOrder(int T)
{if(nul == T) return;printf("%d ", data[T]);PreOrder(Left[T]);PreOrder(Right[T]);
}void R_rotate(const int x)
{const int y = fa[x];const int z = fa[y];const int k = Right[x];int sx = sz[x], sy = sz[y], sk = 0;if(nul != k) sk = sz[k];Left[y] = k;Right[x] = y;if(nul != z){if(y == Left[z]) Left[z] = x;else Right[z] = x;}if(nul != k) fa[k] = y;fa[y] = x;fa[x] = z;sz[y] = sy - sx + sk;sz[x] = sx - sk + sz[y];
}void L_rotate(const int x)
{const int y = fa[x];const int z = fa[y];const int k = Left[x];int sx = sz[x], sy = sz[y], sk = 0;if(nul != k) sk = sz[k];Right[y] = k;Left[x] = y;if(nul != z){if(y == Right[z]) Right[z] = x;else Left[z] = x;}if(nul != k) fa[k] = y;fa[y] = x;fa[x] = z;sz[y] = sy - sx + sk;sz[x] = sx - sk + sz[y];
}int FindTag(int T, int x)
{if(nul == T) return nul;Push_down(T);int p = T;int sum = (nul != Left[p] ? sz[Left[p]] : 0) + 1;while(sum != x && nul != p){if(sum < x){p = Right[p];x -= sum;}else p = Left[p];Push_down(p);sum = (nul != Left[p] ? sz[Left[p]] : 0) + 1;}Push_down(p);return p;
}void Splay(int x, int &T)
{Push_down(T);int p, end, new_t;end = fa[T];new_t = T;if(nul != end) new_t = fa[T];x = FindTag(new_t, x);while(end != fa[x]){p = fa[x];if(end == fa[p]){ //p是根结点if(x == Left[p]) R_rotate(x);else L_rotate(x);break;}//p不是根结点if(x == Left[p]){if(p == Left[fa[p]]){R_rotate(p); //LLR_rotate(x); //LL}else{R_rotate(x); //RLL_rotate(x);}}else{if(p == Right[fa[p]]){ //RRL_rotate(p);L_rotate(x);}else{ //LRL_rotate(x);R_rotate(x);}}}T = x;
}void CUT(int &T, int a, int b, int c)
{Splay(a - 1, T);Splay(b + 1, Right[T]);int tmp;tmp = Left[Right[T]];fa[tmp] = Left[Right[T]] = nul;sz[Right[T]] -= sz[tmp];sz[T] -= sz[tmp];Splay(c, T);Splay(c + 1, Right[T]);Left[Right[T]] = tmp;fa[tmp] = Right[T];sz[Right[T]] += sz[tmp];sz[T] += sz[tmp];
}void FLIP(int &T, int a, int b)
{Splay(a - 1, T);Splay(b + 1, Right[T]);flag[Left[Right[T]]] ^= 1;
}int main()
{//freopen("in.txt", "r", stdin);int T;int n, q, a, b, c;char s[6];while(scanf("%d%d", &n, &q), n >= 0 && q >= 0){space = 0;T = nul;Init();Create(T, n);while(q--){scanf("%s", s);if('C' == s[0]){scanf("%d%d%d", &a, &b, &c);CUT(T, a + 1, b + 1, c + 1);}else{scanf("%d%d", &a, &b);FLIP(T, a + 1, b + 1);}}InOrder(T, n);printf("\n");}return 0;
}







这篇关于Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137905

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir