Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain

2024-09-05 04:08

本文主要是介绍Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应HDU题目:点击打开链接

Play with Chain

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4571    Accepted Submission(s): 1859


Problem Description
YaoYao is fond of playing his chains. He has a chain containing n diamonds on it. Diamonds are numbered from 1 to n.
At first, the diamonds on the chain is a sequence: 1, 2, 3, …, n.
He will perform two types of operations:
CUT a b c: He will first cut down the chain from the ath diamond to the bth diamond. And then insert it after the cth diamond on the remaining chain.
For example, if n=8, the chain is: 1 2 3 4 5 6 7 8; We perform “CUT 3 5 4”, Then we first cut down 3 4 5, and the remaining chain would be: 1 2 6 7 8. Then we insert “3 4 5” into the chain before 5th diamond, the chain turns out to be: 1 2 6 7 3 4 5 8.

FLIP a b: We first cut down the chain from the ath diamond to the bth diamond. Then reverse the chain and put them back to the original position.
For example, if we perform “FLIP 2 6” on the chain: 1 2 6 7 3 4 5 8. The chain will turn out to be: 1 4 3 7 6 2 5 8

He wants to know what the chain looks like after perform m operations. Could you help him? 

Input
There will be multiple test cases in a test data. 
For each test case, the first line contains two numbers: n and m (1≤n, m≤3*100000), indicating the total number of diamonds on the chain and the number of operations respectively.
Then m lines follow, each line contains one operation. The command is like this:
CUT a b c // Means a CUT operation, 1 ≤ a ≤ b ≤ n, 0≤ c ≤ n-(b-a+1).
FLIP a b    // Means a FLIP operation, 1 ≤ a < b ≤ n.
The input ends up with two negative numbers, which should not be processed as a case.

Output
For each test case, you should print a line with n numbers. The ith number is the number of the ith diamond on the chain.

Sample Input
  
8 2 CUT 3 5 4 FLIP 2 6 -1 -1

Sample Output
  
1 4 3 7 6 2 5 8

题意:

n个数一开始是1~n顺序排列,有两个操作。

CUT(a, b, c)操作表示把第a到第b个数取下放到新组成的第c个数后面;

FLIP(a, b)操作表示把第a到第b个数翻转;

比如样例: n = 8

1   2   3   4   5   6   7   8  

CUT(3,  5,  4)后数列变成 1   2   6   7   3   4   5   8

FLIP(2,  6)后数列变成1   4   3   7   6   2   5   8

问m次操作后的数列为?


思路:

伸展树的基础操作,区间截断,区间翻转。

区间截断对于CUT(a, b, c)

1)提取区间[a, b]

具体方法:Splay(a - 1, T),Splay(b +1, T->right);即把第a - 1个数旋转到根,把第b + 1个数旋转到根的右儿子;那以根的右儿子的左儿子为根的子树就是所有区间[a, b]内的值;把它剪下。

2)把第c个数旋转到根,把第c + 1个数旋转到根的右儿子;那根的右儿子的左儿子肯定是空的。

3)把剪下的子树接在根的右儿子的左儿子。

区间翻转:对于FLIP(a, b)

1)提取区间[a, b]

2)在左儿子做翻转标志(注意不是简单的赋值为1,而是要做异或操作,即原来是1的标记为0,是0的标记为1)

3)在适当的地方加Push_down向下更新(跟线段树区间更新一样)


首先要明白的一点是二叉树结点的信息是最终中序遍历(一定是按下标先后顺序)输出的值,而不是下标的值;那怎样取下标为a的结点呢?

利用每个结点的sz,它表示以该结点为子树的的所有元素个数(T->sz = T->left->sz + T->right->sz + 1)

从根结点p开始

1)如果(左子树的元素个数加上1(1表示p结点) )sum = p->left->sz + 1;if (sum == a) ,那就找到了,返回p结点

2)sum比a小,说明要往右走(p = p->right);同时a -= sum;跳到步骤1

3)sum比a大,说明要往左走(p = p->right);a无需变动;跳到步骤1


怎样书写Push_down函数

就把左右子树对调,然后取消该结点标记,把两棵子树添加标记。


注意:修改时要注意Push_down的地方,注意父亲指针;注意更新sz;用动态的方法时要注意儿子是否为空。


指针型

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAX(x, y) ((x) > (y) ? (x) : (y))typedef struct TREE
{int data;TREE *fa, *l, *r;int sz; //以该结点为根的树的总结点数bool flag; //翻转标记
}Tree;bool space;void Push_down(Tree *T)
{if(NULL == T) return;//左右子树对调if(T->flag){Tree *tmp;tmp = T->r;T->r = T->l;T->l = tmp;T->flag = 0;if(T->l) T->l->flag ^= 1;if(T->r) T->r->flag ^= 1;}
}void Init(Tree *&T, int n)
{int i;bool k = 0;Tree *cur, *pre;for(i = n + 1; i > -1; i--){cur = (Tree *)malloc(sizeof(Tree));cur->data = i;cur->fa = cur->l = cur->r = NULL;cur->sz = 1;cur->flag = 0;if(k){cur->r = pre;pre->fa = cur;cur->sz = pre->sz + 1;}if(!k) k = 1;pre = cur;}T = cur;
}void PreOrder(Tree *T)
{if(NULL == T) return;printf("%d ", T->data);PreOrder(T->l);PreOrder(T->r);
}void MidOrder(Tree *T, int n)
{if(NULL == T) return;Push_down(T);MidOrder(T->l, n);if(T->data > 0 && T->data < n + 1){if(space) printf(" ");else space = 1;printf("%d", T->data);}MidOrder(T->r, n);
}void R_rotate(Tree *x)
{Tree *y = x->fa;Tree *z = y->fa;Tree *k = x->r;int sx = x->sz, sy = y->sz, sk = 0;if(k) sk = k->sz;y->l = k;x->r = y;if(z){if(y == z->l) z->l = x;else z->r = x;}if(k) k->fa = y;y->fa = x;x->fa = z;y->sz = sy - sx + sk;x->sz = sx - sk + y->sz;
}void L_rotate(Tree *x)
{Tree *y = x->fa;Tree *z = y->fa;Tree *k = x->l;int sx = x->sz, sy = y->sz, sk = 0;if(k) sk = k->sz;y->r = k;x->l = y;if(z){if(y == z->r) z->r = x;else z->l = x;}if(k) k->fa = y;y->fa = x;x->fa = z;y->sz = sy - sx + sk;x->sz = sx - sk + y->sz;
}//寻找第x个数的结点
Tree *FindTag(Tree *T, int x)
{if(NULL == T) return NULL;Push_down(T);Tree *p;p = T;int sum = (p->l ? p->l->sz : 0) + 1;while(sum != x && p){if(sum < x){p = p->r;x -= sum;}else p = p->l;Push_down(p);sum = (p->l ? p->l->sz : 0) + 1;}Push_down(p);return p;
}void Splay(int x, Tree *&T)
{Push_down(T);Tree *p, *X, *end, *new_t;end = T->fa;new_t = T;if(end) new_t = T->fa;X = FindTag(new_t, x);while(X->fa != end){p = X->fa;if(end == p->fa){ //p是根结点if(X == p->l) R_rotate(X);else L_rotate(X);break;}//p不是根结点if(X == p->l){if(p == p->fa->l){R_rotate(p); //LLR_rotate(X); //LL}else{R_rotate(X); //RLL_rotate(X);}}else{if(p == p->fa->r){ //RRL_rotate(p);L_rotate(X);}else{ //LRL_rotate(X);R_rotate(X);}}}T = X;
}void CUT(Tree *&T, int a, int b, int c)
{//取[a,b]Splay(a - 1, T);Splay(b + 1, T->r);//剪[a,b]Tree *tmp;tmp = T->r->l;tmp->fa = NULL;T->r->l = NULL;T->r->sz -= tmp->sz;T->sz -= tmp->sz;//移动第c个数到根结点,第c+1个数到根结点右儿子//这样根结点右儿子的左儿子必然为空,就可以把剪掉的放上去Splay(c, T);Splay(c + 1, T->r);//接[a, b]T->r->l = tmp;tmp->fa = T->r;T->r->sz += tmp->sz;T->sz += tmp->sz;
}void FLIP(Tree *&T, int a, int b)
{//取[a,b]Splay(a - 1, T);Splay(b + 1, T->r);//标记T->r->lT->r->l->flag ^= 1;
}void FreeTree(Tree *T)
{if(NULL == T) return;FreeTree(T->l);FreeTree(T->r);free(T);
}int main()
{//freopen("in.txt", "r", stdin);Tree *T;int n, q, a, b, c;char s[6];while(scanf("%d%d", &n, &q), n >= 0 && q >= 0){space = 0;T = NULL;Init(T, n);while(q--){scanf("%s", s);if('C' == s[0]){scanf("%d%d%d", &a, &b, &c);CUT(T, a + 1, b + 1, c + 1);}else{scanf("%d%d", &a, &b);FLIP(T, a + 1, b + 1);}}MidOrder(T, n);printf("\n");FreeTree(T);}return 0;
}

数组型

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define M 300090
#define nul (1<<30)
int data[M];
int Left[M];
int Right[M];
int fa[M];
int sz[M];
bool flag[M];
bool space;void Init()
{int i;for(i = 0; i < M; i++)Left[i] = Right[i] = fa[i] = nul;
}void Push_down(int T)
{if(nul == T) return;if(flag[T]){int tmp = Right[T];Right[T] = Left[T];Left[T] = tmp;flag[T] = 0;if(nul != Left[T]) flag[Left[T]] ^= 1;if(nul != Right[T]) flag[Right[T]] ^= 1;}
}void Create(int &T, int n)
{bool k = 0;int cur, pre;for(cur = n + 1; cur > -1; cur--){data[cur] = cur;sz[cur] = 1;flag[cur] = 0;if(k){Right[cur] = pre;fa[pre] = cur;sz[cur] = sz[pre] + 1;}if(!k) k = 1;pre = cur;}T = pre;
}void InOrder(int T, int n)
{if(nul == T) return;Push_down(T);InOrder(Left[T], n);if(data[T] > 0 && data[T] < n + 1){if(space) printf(" ");else space = 1;printf("%d", data[T]);}InOrder(Right[T], n);
}void PreOrder(int T)
{if(nul == T) return;printf("%d ", data[T]);PreOrder(Left[T]);PreOrder(Right[T]);
}void R_rotate(const int x)
{const int y = fa[x];const int z = fa[y];const int k = Right[x];int sx = sz[x], sy = sz[y], sk = 0;if(nul != k) sk = sz[k];Left[y] = k;Right[x] = y;if(nul != z){if(y == Left[z]) Left[z] = x;else Right[z] = x;}if(nul != k) fa[k] = y;fa[y] = x;fa[x] = z;sz[y] = sy - sx + sk;sz[x] = sx - sk + sz[y];
}void L_rotate(const int x)
{const int y = fa[x];const int z = fa[y];const int k = Left[x];int sx = sz[x], sy = sz[y], sk = 0;if(nul != k) sk = sz[k];Right[y] = k;Left[x] = y;if(nul != z){if(y == Right[z]) Right[z] = x;else Left[z] = x;}if(nul != k) fa[k] = y;fa[y] = x;fa[x] = z;sz[y] = sy - sx + sk;sz[x] = sx - sk + sz[y];
}int FindTag(int T, int x)
{if(nul == T) return nul;Push_down(T);int p = T;int sum = (nul != Left[p] ? sz[Left[p]] : 0) + 1;while(sum != x && nul != p){if(sum < x){p = Right[p];x -= sum;}else p = Left[p];Push_down(p);sum = (nul != Left[p] ? sz[Left[p]] : 0) + 1;}Push_down(p);return p;
}void Splay(int x, int &T)
{Push_down(T);int p, end, new_t;end = fa[T];new_t = T;if(nul != end) new_t = fa[T];x = FindTag(new_t, x);while(end != fa[x]){p = fa[x];if(end == fa[p]){ //p是根结点if(x == Left[p]) R_rotate(x);else L_rotate(x);break;}//p不是根结点if(x == Left[p]){if(p == Left[fa[p]]){R_rotate(p); //LLR_rotate(x); //LL}else{R_rotate(x); //RLL_rotate(x);}}else{if(p == Right[fa[p]]){ //RRL_rotate(p);L_rotate(x);}else{ //LRL_rotate(x);R_rotate(x);}}}T = x;
}void CUT(int &T, int a, int b, int c)
{Splay(a - 1, T);Splay(b + 1, Right[T]);int tmp;tmp = Left[Right[T]];fa[tmp] = Left[Right[T]] = nul;sz[Right[T]] -= sz[tmp];sz[T] -= sz[tmp];Splay(c, T);Splay(c + 1, Right[T]);Left[Right[T]] = tmp;fa[tmp] = Right[T];sz[Right[T]] += sz[tmp];sz[T] += sz[tmp];
}void FLIP(int &T, int a, int b)
{Splay(a - 1, T);Splay(b + 1, Right[T]);flag[Left[Right[T]]] ^= 1;
}int main()
{//freopen("in.txt", "r", stdin);int T;int n, q, a, b, c;char s[6];while(scanf("%d%d", &n, &q), n >= 0 && q >= 0){space = 0;T = nul;Init();Create(T, n);while(q--){scanf("%s", s);if('C' == s[0]){scanf("%d%d%d", &a, &b, &c);CUT(T, a + 1, b + 1, c + 1);}else{scanf("%d%d", &a, &b);FLIP(T, a + 1, b + 1);}}InOrder(T, n);printf("\n");}return 0;
}







这篇关于Splay树(区间添加删除 | 区间翻转)——HDU 3487 Play with Chain的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137905

相关文章

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri