数位DP | 组合数学 —— POJ 3252

2024-09-05 04:08
文章标签 组合 dp 数学 poj 数位 3252

本文主要是介绍数位DP | 组合数学 —— POJ 3252,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应POJ题目:点击打开链接

Round Numbers
Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
Submit  Status  Practice  POJ 3252

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively  Start and  Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range  Start..  Finish

Sample Input

2 12

Sample Output

6

题意:

求区间[a, b]内有多少个数的二进制中0的数量不小于1的数量。


思路:

        从高位开始枚举二进制数,dp[cnt][n0][n1]表示在cnt位数(二进制下)时0的数量为n0,1的数量为n1时有多少个满足题意的解,递归进行记忆化搜索求出[0, a] 内的解和[0, b]内的解,则ans = solve(b) - solve(a - 1)。

也可使用组合数学完成。


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <iostream>
using namespace std;
const int INF=1<<30;
const int MAXN=100000+10;
int num[35];
int dp[35][35][35];int dfs(int len, int n0, int n1, bool e)
{if( !e && dp[len][n0][n1] !=-1 ) return dp[len][n0][n1];if(len==0){if(n0>=n1) return 1;return 0;}int ans=0;int u=e?num[len]:1; //如果当前位有限制,则u不能超过限定值(0或1),否则没限制(即u取1)for(int i=0; i<=u; i++){ans+=dfs(len-1, n0+(i==0&&n1!=0), n1+(i!=0), (i==u)&&e);//如果当前位的值为0且之前出现过1(如果当前位之前全为0,则相当于前导0),则0的数量+1,否则1的数量+1//如果当前位有限制且已经枚举到限定值,则下一位有限制}if(!e) dp[len][n0][n1] =ans;return ans;
}int solve(int x)
{int cnt=0;while(x){num[++cnt]=x&1;x>>=1;}return dfs(cnt,0,0,1);
}int main()
{//freopen("in.txt","r",stdin);int n,m;while(scanf("%d%d", &n,&m)==2){memset(dp,-1,sizeof(dp));printf("%d\n", solve(m)-solve(n-1));}return 0;
}






这篇关于数位DP | 组合数学 —— POJ 3252的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137901

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n