GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果

2024-09-05 03:44

本文主要是介绍GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

微软开源的GraphRAG是真的不好用,起码现在是,太多吐槽点了

如果你没有安装好GraphRAG,请看我的这篇文章:

GraphRAG:LLM之本地部署GraphRAG(GLM-4+Xinference的embedding模型)(附带ollma部署方式

然后你需要安装docker:

Docker之基于Ubuntu安装

Neo4j

还是不说简介,有空再补

Neo4j Dcocker安装

docker run \-p 7474:7474 -p 7687:7687 \--name neo4j-apoc \-e NEO4J_apoc_export_file_enabled=true \-e NEO4J_apoc_import_file_enabled=true \-e NEO4J_apoc_import_file_use__neo4j__config=true \-e NEO4J_PLUGINS=\[\"apoc\"\] \neo4j:5.21.2

然后运行到命令行出现started

 点击链接进入界面

会让你输入账户和密码,默认都是neo4j

点击红框位置,可以查看版本信息和生成的标签等

 下载关于neo4j的python包

下载之后就可以通过python去控制neo4j了

import pandas as pd
from neo4j import GraphDatabase
import timeNEO4J_URI = "neo4j://localhost"  # or neo4j+s://xxxx.databases.neo4j.io
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "你自己的密码" 
NEO4J_DATABASE = "neo4j"# Create a Neo4j driver
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))GRAPHRAG_FOLDER = "/home/nlp/graphrag/result/output/20240814-151056/artifacts" #输入你的路径statements = """
create constraint chunk_id if not exists for (c:__Chunk__) require c.id is unique;
create constraint document_id if not exists for (d:__Document__) require d.id is unique;
create constraint entity_id if not exists for (c:__Community__) require c.community is unique;
create constraint entity_id if not exists for (e:__Entity__) require e.id is unique;
create constraint entity_title if not exists for (e:__Entity__) require e.name is unique;
create constraint entity_title if not exists for (e:__Covariate__) require e.title is unique;
create constraint related_id if not exists for ()-[rel:RELATED]->() require rel.id is unique;
""".split(";")for statement in statements:if len((statement or "").strip()) > 0:print(statement)driver.execute_query(statement)def batched_import(statement, df, batch_size=1000):"""Import a dataframe into Neo4j using a batched approach.Parameters: statement is the Cypher query to execute, df is the dataframe to import, and batch_size is the number of rows to import in each batch."""total = len(df)start_s = time.time()for start in range(0,total, batch_size):batch = df.iloc[start: min(start+batch_size,total)]result = driver.execute_query("UNWIND $rows AS value " + statement,rows=batch.to_dict('records'),database_=NEO4J_DATABASE)print(result.summary.counters)print(f'{total} rows in { time.time() - start_s} s.')return total# 导入文档 create_final_documents
doc_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_documents.parquet', columns=["id", "title"])
doc_df.head(2)
# import documents
#
statement = """
MERGE (d:__Document__ {id:value.id})
SET d += value {.title}
"""
batched_import(statement, doc_df)# 导入 文本联系
text_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_text_units.parquet',columns=["id","text","n_tokens","document_ids"])
text_df.head(2)
statement = """
MERGE (c:__Chunk__ {id:value.id})
SET c += value {.text, .n_tokens}
WITH c, value
UNWIND value.document_ids AS document
MATCH (d:__Document__ {id:document})
MERGE (c)-[:PART_OF]->(d)
"""
batched_import(statement, text_df)# 导入 抽取的实体
entity_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_entities.parquet',columns=["name", "type", "description", "human_readable_id", "id", "description_embedding","text_unit_ids"])
entity_df.head(2)
#
entity_statement = """
MERGE (e:__Entity__ {id:value.id})
SET e += value {.human_readable_id, .description, name:replace(value.name,'"','')}
WITH e, value
CALL db.create.setNodeVectorProperty(e, "description_embedding", value.description_embedding)
CALL apoc.create.addLabels(e, case when coalesce(value.type,"") = "" then [] else [apoc.text.upperCamelCase(replace(value.type,'"',''))] end) yield node
UNWIND value.text_unit_ids AS text_unit
MATCH (c:__Chunk__ {id:text_unit})
MERGE (c)-[:HAS_ENTITY]->(e)
"""
batched_import(entity_statement, entity_df)# 导入实体关系
rel_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_relationships.parquet',columns=["source", "target", "id", "rank", "weight", "human_readable_id", "description","text_unit_ids"])
rel_df.head(2)
rel_statement = """MATCH (source:__Entity__ {name:replace(value.source,'"','')})MATCH (target:__Entity__ {name:replace(value.target,'"','')})// not necessary to merge on id as there is only one relationship per pairMERGE (source)-[rel:RELATED {id: value.id}]->(target)SET rel += value {.rank, .weight, .human_readable_id, .description, .text_unit_ids}RETURN count(*) as createdRels
"""
batched_import(rel_statement, rel_df)# 导入 社区
community_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_communities.parquet',columns=["id", "level", "title", "text_unit_ids", "relationship_ids"])community_df.head(2)statement = """
MERGE (c:__Community__ {community:value.id})
SET c += value {.level, .title}
/*
UNWIND value.text_unit_ids as text_unit_id
MATCH (t:__Chunk__ {id:text_unit_id})
MERGE (c)-[:HAS_CHUNK]->(t)
WITH distinct c, value
*/
WITH *
UNWIND value.relationship_ids as rel_id
MATCH (start:__Entity__)-[:RELATED {id:rel_id}]->(end:__Entity__)
MERGE (start)-[:IN_COMMUNITY]->(c)
MERGE (end)-[:IN_COMMUNITY]->(c)
RETURn count(distinct c) as createdCommunities
"""batched_import(statement, community_df)# 导入社区报告
community_report_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_community_reports.parquet',columns=["id", "community", "level", "title", "summary", "findings", "rank","rank_explanation", "full_content"])
community_report_df.head(2)
# import communities
#
community_statement = """MATCH (c:__Community__ {community: value.community})
SET c += value {.level, .title, .rank, .rank_explanation, .full_content, .summary}
WITH c, value
UNWIND range(0, size(value.findings)-1) AS finding_idx
WITH c, value, finding_idx, value.findings[finding_idx] as finding
MERGE (c)-[:HAS_FINDING]->(f:Finding {id: finding_idx})
SET f += finding"""
batched_import(community_statement, community_report_df)

 在运行的时候可能会出现apoc相关的错误,这是neo4j的一个插件,可能网络问题?你没安装好

看看官方安装说明:官方apoc安装说明

网上也有人说从github上下载再放到目录上的:github地址

 确定自己有没有安装成功输入:return apoc.version() 成功会显示版本信息

 还有个错误 就是neo4j已经有相关信息在里面了或者说你的graphrag保存了一样的数据

多排查排查问题吧 如果有相关信息在里面重复了的,使用这个match (n) detach delete (n)

会删掉你所有信息

然后有空学学neo4j的命令操作

 欢迎大家点赞或收藏~

大家的点赞或收藏可以鼓励作者加快更新哟·

参考链接:

微软新一代RAG II实战教程:GraphRAG与Neo4j强强联合,实现结果可视化

这篇关于GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137859

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机