GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果

2024-09-05 03:44

本文主要是介绍GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

微软开源的GraphRAG是真的不好用,起码现在是,太多吐槽点了

如果你没有安装好GraphRAG,请看我的这篇文章:

GraphRAG:LLM之本地部署GraphRAG(GLM-4+Xinference的embedding模型)(附带ollma部署方式

然后你需要安装docker:

Docker之基于Ubuntu安装

Neo4j

还是不说简介,有空再补

Neo4j Dcocker安装

docker run \-p 7474:7474 -p 7687:7687 \--name neo4j-apoc \-e NEO4J_apoc_export_file_enabled=true \-e NEO4J_apoc_import_file_enabled=true \-e NEO4J_apoc_import_file_use__neo4j__config=true \-e NEO4J_PLUGINS=\[\"apoc\"\] \neo4j:5.21.2

然后运行到命令行出现started

 点击链接进入界面

会让你输入账户和密码,默认都是neo4j

点击红框位置,可以查看版本信息和生成的标签等

 下载关于neo4j的python包

下载之后就可以通过python去控制neo4j了

import pandas as pd
from neo4j import GraphDatabase
import timeNEO4J_URI = "neo4j://localhost"  # or neo4j+s://xxxx.databases.neo4j.io
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "你自己的密码" 
NEO4J_DATABASE = "neo4j"# Create a Neo4j driver
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))GRAPHRAG_FOLDER = "/home/nlp/graphrag/result/output/20240814-151056/artifacts" #输入你的路径statements = """
create constraint chunk_id if not exists for (c:__Chunk__) require c.id is unique;
create constraint document_id if not exists for (d:__Document__) require d.id is unique;
create constraint entity_id if not exists for (c:__Community__) require c.community is unique;
create constraint entity_id if not exists for (e:__Entity__) require e.id is unique;
create constraint entity_title if not exists for (e:__Entity__) require e.name is unique;
create constraint entity_title if not exists for (e:__Covariate__) require e.title is unique;
create constraint related_id if not exists for ()-[rel:RELATED]->() require rel.id is unique;
""".split(";")for statement in statements:if len((statement or "").strip()) > 0:print(statement)driver.execute_query(statement)def batched_import(statement, df, batch_size=1000):"""Import a dataframe into Neo4j using a batched approach.Parameters: statement is the Cypher query to execute, df is the dataframe to import, and batch_size is the number of rows to import in each batch."""total = len(df)start_s = time.time()for start in range(0,total, batch_size):batch = df.iloc[start: min(start+batch_size,total)]result = driver.execute_query("UNWIND $rows AS value " + statement,rows=batch.to_dict('records'),database_=NEO4J_DATABASE)print(result.summary.counters)print(f'{total} rows in { time.time() - start_s} s.')return total# 导入文档 create_final_documents
doc_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_documents.parquet', columns=["id", "title"])
doc_df.head(2)
# import documents
#
statement = """
MERGE (d:__Document__ {id:value.id})
SET d += value {.title}
"""
batched_import(statement, doc_df)# 导入 文本联系
text_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_text_units.parquet',columns=["id","text","n_tokens","document_ids"])
text_df.head(2)
statement = """
MERGE (c:__Chunk__ {id:value.id})
SET c += value {.text, .n_tokens}
WITH c, value
UNWIND value.document_ids AS document
MATCH (d:__Document__ {id:document})
MERGE (c)-[:PART_OF]->(d)
"""
batched_import(statement, text_df)# 导入 抽取的实体
entity_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_entities.parquet',columns=["name", "type", "description", "human_readable_id", "id", "description_embedding","text_unit_ids"])
entity_df.head(2)
#
entity_statement = """
MERGE (e:__Entity__ {id:value.id})
SET e += value {.human_readable_id, .description, name:replace(value.name,'"','')}
WITH e, value
CALL db.create.setNodeVectorProperty(e, "description_embedding", value.description_embedding)
CALL apoc.create.addLabels(e, case when coalesce(value.type,"") = "" then [] else [apoc.text.upperCamelCase(replace(value.type,'"',''))] end) yield node
UNWIND value.text_unit_ids AS text_unit
MATCH (c:__Chunk__ {id:text_unit})
MERGE (c)-[:HAS_ENTITY]->(e)
"""
batched_import(entity_statement, entity_df)# 导入实体关系
rel_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_relationships.parquet',columns=["source", "target", "id", "rank", "weight", "human_readable_id", "description","text_unit_ids"])
rel_df.head(2)
rel_statement = """MATCH (source:__Entity__ {name:replace(value.source,'"','')})MATCH (target:__Entity__ {name:replace(value.target,'"','')})// not necessary to merge on id as there is only one relationship per pairMERGE (source)-[rel:RELATED {id: value.id}]->(target)SET rel += value {.rank, .weight, .human_readable_id, .description, .text_unit_ids}RETURN count(*) as createdRels
"""
batched_import(rel_statement, rel_df)# 导入 社区
community_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_communities.parquet',columns=["id", "level", "title", "text_unit_ids", "relationship_ids"])community_df.head(2)statement = """
MERGE (c:__Community__ {community:value.id})
SET c += value {.level, .title}
/*
UNWIND value.text_unit_ids as text_unit_id
MATCH (t:__Chunk__ {id:text_unit_id})
MERGE (c)-[:HAS_CHUNK]->(t)
WITH distinct c, value
*/
WITH *
UNWIND value.relationship_ids as rel_id
MATCH (start:__Entity__)-[:RELATED {id:rel_id}]->(end:__Entity__)
MERGE (start)-[:IN_COMMUNITY]->(c)
MERGE (end)-[:IN_COMMUNITY]->(c)
RETURn count(distinct c) as createdCommunities
"""batched_import(statement, community_df)# 导入社区报告
community_report_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_community_reports.parquet',columns=["id", "community", "level", "title", "summary", "findings", "rank","rank_explanation", "full_content"])
community_report_df.head(2)
# import communities
#
community_statement = """MATCH (c:__Community__ {community: value.community})
SET c += value {.level, .title, .rank, .rank_explanation, .full_content, .summary}
WITH c, value
UNWIND range(0, size(value.findings)-1) AS finding_idx
WITH c, value, finding_idx, value.findings[finding_idx] as finding
MERGE (c)-[:HAS_FINDING]->(f:Finding {id: finding_idx})
SET f += finding"""
batched_import(community_statement, community_report_df)

 在运行的时候可能会出现apoc相关的错误,这是neo4j的一个插件,可能网络问题?你没安装好

看看官方安装说明:官方apoc安装说明

网上也有人说从github上下载再放到目录上的:github地址

 确定自己有没有安装成功输入:return apoc.version() 成功会显示版本信息

 还有个错误 就是neo4j已经有相关信息在里面了或者说你的graphrag保存了一样的数据

多排查排查问题吧 如果有相关信息在里面重复了的,使用这个match (n) detach delete (n)

会删掉你所有信息

然后有空学学neo4j的命令操作

 欢迎大家点赞或收藏~

大家的点赞或收藏可以鼓励作者加快更新哟·

参考链接:

微软新一代RAG II实战教程:GraphRAG与Neo4j强强联合,实现结果可视化

这篇关于GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137859

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画