CodeForces 487C Prefix Product Sequence

2024-09-05 03:18

本文主要是介绍CodeForces 487C Prefix Product Sequence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

构造一个1~n的排列  使得n个前缀积%n是一个0~n-1的排列

思路:

首先确定n一定放最后  要不然会有%n会有多个0  这时n-1位置的前缀积为(n-1)!

接着讨论n  n为合数时只有n=4有解  因为如果n为合数一定可以拆成p*q的形式  明显pq|(n-1)!

然后构造ai=(i+1)*inv[i]  因为(i+1)*inv[i] == (j+1)*inv[j]时一定有i==j  所以这样构造满足ai是唯一的  也就是说是一个排列

而且这样构造使得前缀积 a1*a2*a3... = 1 * 2 * inv[1] * 3 * inv[2]...  那么%n的结果也是一个排列

最后输出答案即可  1~n的逆元可以打表求出  递推公式为 (mod-mod/i)*inv[mod%i]%mod

PS:队友说构造的想法来自于 “这种题%n后的排列一定很特殊  所以尝试 1 2 3 4 5 ....  即可”

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long LL;
#define N 100010int inv[N];
int n;int main() {scanf("%d", &n);if (n == 1) {puts("YES");printf("1\n");return 0;} else if (n == 4) {puts("YES");printf("1\n3\n2\n4\n");return 0;}for (int i = 2; i * i <= n; i++) {if (n % i == 0) {puts("NO");return 0;}}puts("YES");puts("1");inv[1] = 1;for (int i = 2; i < n; i++) {inv[i] = (LL) (n - n / i) * inv[n % i] % n;printf("%d\n", (int) ((LL) (i) * inv[i - 1] % n));}printf("%d\n", n);return 0;
}


这篇关于CodeForces 487C Prefix Product Sequence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137818

相关文章

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

ural 1014. Product of Digits贪心

1014. Product of Digits Time limit: 1.0 second Memory limit: 64 MB Your task is to find the minimal positive integer number  Q so that the product of digits of  Q is exactly equal to  N. Inpu

Codeforces Round 971 (Div. 4) (A~G1)

A、B题太简单,不做解释 C 对于 x y 两个方向,每一个方向至少需要 x / k 向上取整的步数,取最大值。 由于 x 方向先移动,假如 x 方向需要的步数多于 y 方向的步数,那么最后 y 方向的那一步就不需要了,答案减 1 代码 #include <iostream>#include <algorithm>#include <vector>#include <string>

浙大数据结构:02-线性结构4 Pop Sequence

这道题我们采用数组来模拟堆栈和队列。 简单说一下大致思路,我们用栈来存1234.....,队列来存输入的一组数据,栈与队列进行匹配,相同就pop 机翻 1、条件准备 stk是栈,que是队列。 tt指向的是栈中下标,front指向队头,rear指向队尾。 初始化栈顶为0,队头为0,队尾为-1 #include<iostream>using namespace std;#defi

【UVA】1626-Brackets sequence(动态规划)

一道算是比较难理解的动规。 状态转移分2个: (用d[i][j]表示在i~j内最少需要添加几个括号,保持平衡) 1.如果s[i]和s[j]是一对括号,那么d[i][j] = d[i + 1][j - 1] 2.否则的话 d[i][j] = min(d[i][k],[k + 1][j]); 边界是d[i + 1][i] = 0; d[i][i] = 1; 13993644 162

【UVA】10534 - Wavio Sequence(LIS最长上升子序列)

这题一看10000的数据量就知道必须用nlog(n)的时间复杂度。 所以特意去看了最长上升子序列的nlog(n)的算法。 如果有2个位置,该位置上的元素为A[i]和A[j],并且他们满足以下条件: 1.dp[i] = dp[j]    (dp[x]代表以x结尾的最长上升子序列长度) 2.A[i] < A[j] 3.i < j 那么毫无疑问,选择dp[i] 一定优于选择dp[j] 那么