PyTorch Demo-3 : 动态调整学习率

2024-09-05 01:38

本文主要是介绍PyTorch Demo-3 : 动态调整学习率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 一些必要的库和参数
import torch
import torch.nn as nn
from torchvision import models
import matplotlib.pyplot as plt
import numpy as np
以SGD为例
model = models.resnet18()init_lr = 0.1
optimizer = torch.optim.SGD(model.parameters(), init_lr)
# 查看学习率
for param_group in optimizer.param_groups:print(param_group['lr'])
# 0.1
1. 官方例子里是如下的自定义函数方式,以最常用的调整策略StepLR为例,每隔一定轮数进行改变
# Reference:https://github.com/pytorch/examples/blob/master/imagenet/main.py
# 每30轮学习率乘以0.1
def adjust_learning_rate(optimizer, epoch, init_lr):"""optimizer: 优化器epoch: 训练轮数,也可以根据需要加入其它参数init_lr:初始学习率,也可以设置为全局变量"""lr = init_lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr
total_epoch = 100
lrs = []
# 每一轮调用函数即可
for epoch in range(total_epoch):adjust_learning_rate(optimizer, epoch, init_lr)lrs.append(optimizer.param_groups[0]['lr'])plt.plot(range(total_epoch), lrs)
plt.title('adjustLR')
plt.savefig('adjustLR.jpg', bbox_inches='tight')

adjustLR

这种方法可以很方便根据自己的逻辑获得想要的学习率变化策略,可以很复杂,也可以很简单。

2. lr_scheduler

PyTorch中提供了多种预设的学习率策略,都包含在torch.optim.lr_scheduler ,详细见 Docs 。

同理,以 StepLR 为例

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
total_epoch = 100
lrs = []
for epoch in range(total_epoch):lrs.append(optimizer.param_groups[0]['lr'])# 调用step()即更新学习率scheduler.step()
plt.plot(range(total_epoch), lrs)
plt.title('StepLR')

在这里插入图片描述
可以看到,两种方式的StepLR效果是一样的。

3. 带warmup的学习率调整
3.1 自定义函数
def adjust_learning_rate(optimizer, warm_up_step, epoch, init_lr):if epoch < warm_up_step:lr = (epoch + 1) / warm_up_step * init_lrelse:lr = init_lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr

在这里插入图片描述

3.2 LambdaLR

lr_scheduler中也有一项自定义的学习率调整方法,通过构造匿名函数来实现

lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.1 ** (epoch // 30)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)

在这里插入图片描述

需要注意的是,自定义函数的方式是直接对优化器中的学习率赋值,而LambdaLR是学习率的权重!
3.3 余弦变换

余弦变换也是常用的学习率调整策略之一,跟steplr可以达到差不多的效果,但是从训练图像上看会更平稳一些。

lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.5 * (np.cos((epoch - warm_up_step) / (total_epoch - warm_up_step) * np.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)

在这里插入图片描述

4. Other

其他策略如:余弦退火,指数变换,正弦变换,学习率重启等。

这篇关于PyTorch Demo-3 : 动态调整学习率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137608

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的