STM32G474之DAC

2024-09-04 19:28
文章标签 stm32g474 dac

本文主要是介绍STM32G474之DAC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32G474分别使用CORDIC硬件和“math.h”的正弦值,从DAC1和DAC2输出。
1、DAC特点

 PA4的附加功能为DAC1_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。
PA6的附加功能为DAC2_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。

2、测试程序

DAC_HandleTypeDef      DAC_1_Handler;   //DAC1句柄
DAC_HandleTypeDef      DAC_2_Handler;   //DAC2句柄

void DAC1_Init(void)
{
    DAC_ChannelConfTypeDef DAC1_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC1_CLK_ENABLE();  //使能DAC1时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_4;           //选择引脚编号为4
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOC的外设寄存器

    DAC_1_Handler.Instance = DAC1; //DAC1
    HAL_DAC_Init(&DAC_1_Handler);  //初始化DAC1

    DAC1_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC1_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC1_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC1_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC1_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC1_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
  DAC1_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式
    DAC1_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;    //不允许内部连接DAC1_CH1
  HAL_DAC_ConfigChannel(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_1_Handler,DAC_CHANNEL_1); //开启DAC1通道1                  
    
    HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

    Sin_CORDIC_INT();//用CORDIC算法实现正弦计算
}

void DAC2_Init(void)
{
    DAC_ChannelConfTypeDef DAC2_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC2_CLK_ENABLE();  //使能DAC2时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_6;           //选择引脚编号为6
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOC的外设寄存器

    DAC_2_Handler.Instance = DAC2; //DAC2
    HAL_DAC_Init(&DAC_2_Handler);  //初始化DAC2

    DAC2_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC2_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC2_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC2_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC2_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC2_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
  DAC2_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式
    DAC2_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;    //不允许内部连接DAC2_CH1
  HAL_DAC_ConfigChannel(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_2_Handler,DAC_CHANNEL_1); //开启DAC2通道1                  
    
    HAL_DAC_SetValue(&DAC_2_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC2输出电压: 2048*3.3/(0xFFF+1)=1.65V
}

//函数功能: 用CORDIC算法实现正弦计算
void Sin_CORDIC_INT    (void)
{
    CORDIC_HandleTypeDef hcordic;                             //三角函数描述结构体
    CORDIC_ConfigTypeDef sCordicConfig;                       //参数配置结构体
  __HAL_RCC_CORDIC_CLK_ENABLE();                            //开启时钟
    
    hcordic.Instance = CORDIC;                                //选择三角函数计算单元
  HAL_CORDIC_Init(&hcordic);                                //初始化
    
    sCordicConfig.Function         = CORDIC_FUNCTION_SINE;     //选择计算正弦
  sCordicConfig.Precision        = CORDIC_PRECISION_6CYCLES; //选择计算精度等级
  sCordicConfig.Scale            = CORDIC_SCALE_0;           //选择计算系数
  sCordicConfig.NbWrite          = CORDIC_NBWRITE_1;         //选择计算结果个数
  sCordicConfig.NbRead           = CORDIC_NBREAD_1;          //选择输出正弦
  sCordicConfig.InSize           = CORDIC_INSIZE_32BITS;
    //选择输入数据格式Q1.31,在Q1.31格式的数字范围:-1 (0x80000000) to 1 至 2^(-31) (0x7FFFFFFF).
  sCordicConfig.OutSize          = CORDIC_OUTSIZE_32BITS;    //选择数据输出格式Q1.31
  HAL_CORDIC_Configure(&hcordic, &sCordicConfig);            //初始化
}

//0<=angles<360,返回值在-1和1之间
//主频170MHz时,本函数执行时间330ns

float sin_f(float angles)
{
    MODIFY_REG(CORDIC->CSR,CORDIC_CSR_FUNC|CORDIC_CSR_SCALE,CORDIC_FUNCTION_SINE|CORDIC_SCALE_0);
    //选择计算类型:CORDIC_FUNCTION_SINE
    WRITE_REG(CORDIC->WDATA, (int32_t)((180.0f-angles)*11930464.7f));
    //小于180度为正数,大于180度为负数,乘以11930464.7就转换成“q1.31格式”的数据
    //写入CORDIC_WDATA寄存器后,就可以读取“CORDIC_RDATA寄存器的数据”
    //由于“模为0x80000000”,0x80000000/180=2147483648/180=11930464.7

    return (int32_t)READ_REG(CORDIC->RDATA)/2147483648.0f;
    //读取CORDIC_RDATA寄存器的数据是“q1.31格式”的数据,经过转换后,就是正弦值
    //由于“模为0x80000000”,也就是2147483648,除以“模”后就得到正弦值,范围为[-1,1]

}

//函数功能:测试DAC输出正弦波形
void Test_DAC_Output_CORDIC_Sin(void)
{
    __IO float i=0.0f;
    __IO uint16_t ADC_value1=0x00;

    while(1)
    {
        for(i=0.0f;i<360.0f;i=i+0.1f)
        {
            ADC_value1=((sin_f(i)+1.65f)/3.3f)*4095.0f;
            //使用硬件实现,需要3.72ms完成一个for循环
            //设置偏置电压为1.65V,当sin_f(i)=0,ADC的值为1.65V

            HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,ADC_value1);
            //设置DAC输出电压: ADC_value1 * 3.3 / (0xFFF+1),单位为“V”
        }
    }
}

//函数功能:测试DAC输出正弦波形
void Test_DAC_Output_math_Sin(void)
{
    __IO float i=0.0f;
    __IO uint16_t ADC_value1=0x00;

    while(1)
    {
        for(i=0.0f;i<360.0f;i=i+0.1f)
        {
      ADC_value1=( ( sin(i*3.1415926/180)+1.65f )/3.3f )*4095.0f;
            //使用数学函数,需要172ms完成一个for循环
            HAL_DAC_SetValue(&DAC_2_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,ADC_value1);
            //设置DAC输出电压: ADC_value1 * 3.3 / (0xFFF+1),单位为“V”
        }
    }
}

 3、测试结果

在没有任何延时的条件下,硬件产生正弦波形周期比软件产生正弦波形要小很多。,说明硬件响应速度比软件快。

这篇关于STM32G474之DAC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136813

相关文章

学习硬件测试05:NTC(ADC)+正弦波(DAC)+DMA(ADC+DAC)(P73、P76、P78)

文章以下内容全部为硬件相关知识,鲜有软件知识,并且记的是自己需要的部分,大家可能看不明白。 一、NTC(ADC) 1.1实验现象 本实验用 NTC 采集温度,数码管实时显示温度数据(整数),左下角 USB 小串口每隔 1S 打印温度信息。 1.2硬件电路 NTC 电阻是一个模拟温度传感器,随着温度的升高,电阻值逐渐减小。电路简单介绍如下: 电源滤波电容在 25℃ 室温下 NTC 电

STM32G474窗口看门狗中断

STM32G474窗口看门狗中断用来演示最后一次喂狗。注意:即使窗口看门狗被禁止,窗口看门狗的"递减计数器"也会继续递减计数。 1、窗口看门狗复位的条件 1)、将"控制寄存器WWDG_CR"中的WDGA=1,激活"窗口看门狗计数器等于0x3F"时,则产生复位 2)、装载"窗口看门狗的计数器值"大于"窗口看门狗window寄存器的值",则产生复位。 3)、窗口看门狗的"提前唤醒中断EWI=1",且

STM32G474之使用DAC1和DAC2测试模拟比较器

STM32G474使用DAC1和DAC2的输出作为比较器输入,测试模拟比较器,方法如下: PA1的附加功能为COMP1_INP,无需映射,直接将它配置为模拟功能,就可以使用了。 将COMP1_OUT引脚映射到PA0; 采用DAC2_OUT1输出电压给COMP1_INP引脚,因此在测试时,需要将PA6和PA1短接。 采用DAC1_OUT1输出在内部连接到“比较器反向输入端”; 当DAC2_OUT1输

STM32G474之随机数发生器

STM32G474一个RNG设备,它能提供由“集成模拟电路”生成的32位随机数,是硬件随机数发生器。在C语言中,若包含头文件“stdlib.h”,我们就可以使用有rand()函数,它是C语言中用于生成随机数的函数。 1、“随机数”的应用 1)、一般用“随机数”作为延时函数的传递参数,来获取不同的延时时间。在多主机通讯系统中,要求时间同步采集数据,但是数据传输,若发生在同一时刻,通讯就会发生碰撞

STM32G474之TIM1捕获1模式

STM32G474采用TIM8产生方波信号,使用TIM1工作于捕获1模式,并计算方波频率。捕获方波周期,在有些开发中,还是能用到。建议开发时使用HAL库自带的库函数。使用寄存器方法也可以实现,但是后期修改不太方便。 测试时,将PA8引脚复用为TIM1_CH1,LED灯引脚为PC13 TIM1_CH1重映射,见下面的表格:  1、测试程序 #include "Timer1.h"#incl

DAC: High-Fidelity Audio Compression with Improved RVQGAN

Rithesh KumarDescript, Inc.2023NIPS code 文章目录 abstratmethod abstrat 44.1k音频编码为8k bps,接近90x压缩比;可以处理speech, musiccodebook collapse: 部分码本没有利用到。----quantizer dropout :允许单个模型支持可变比特率,但实际上会损害全带宽音频的

STM32G474之TIM1更新中断

STM32G474之TIM1能产生如下的中断: 1、捕获比较1个事件(Capture compare 1 event) 用来获取“捕获输入脉冲的时间”,其次用来输出“比较输出波形”; 2、捕获比较2个事件(Capture compare 2 event) 3、捕获比较3个事件(Capture compare 3 event) 4、捕获比较4个事件(Capture compare 4 ev

《嵌入式-STM32开发指南》第二部分 基础篇 - 第8章 模拟输入输出-DAC

2.1 DAC工作原理 2.1.1 DAC介绍 数字/模拟转换模块(DAC)是12位数字输入,电压输出的数字/模拟转换器。DAC可以配置为8位或12位模式,也可以与DMA控制器配合使用。DAC工作在12位模式时,数据可以设置成左对齐或右对齐。DAC模块有2个输出通道,每个通道都有单独的转换器。在双DAC模式下,2个通道可以独立地进行转换,也可以同时进行转换并同步地更新2个通道的输出。DAC可以

STM32G474采用“多个单通道ADC转换”读取3个ADC引脚的电压

STM32G474采用“多个单通道ADC转换”读取3个ADC引脚的电压:PC0、PA1和PA2。本测试将ADC1_IN6映射到PC0引脚,ADC12_IN2映射到PA1引脚,ADC1_IN3映射到PA2引脚。  1、ADC输入 ADC输入电压范围:Vref– ≤ VIN ≤ Vref+ ADC支持“单端输入”: 在“单端输入模式”下,“通道i”的模拟电压等于VINP[i]和VREF-之

6-1 STM32F405--DAC输出(软件触发)

功能描述:配置STM32F405RGT6的DAC,在PA5引脚每隔2秒分别输出1V、2V、3V的电压。 main.c文件内容如下 #include "stm32f4xx.h" // Device header#include "Delay.h"#include "MyDAC.h"int main(void){MyDAC_Init(); //初始化DACwh