STM32G474之使用DAC1和DAC2测试模拟比较器

2024-09-06 05:44

本文主要是介绍STM32G474之使用DAC1和DAC2测试模拟比较器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32G474使用DAC1和DAC2的输出作为比较器输入,测试模拟比较器,方法如下:
PA1的附加功能为COMP1_INP,无需映射,直接将它配置为模拟功能,就可以使用了。
将COMP1_OUT引脚映射到PA0;
采用DAC2_OUT1输出电压给COMP1_INP引脚,因此在测试时,需要将PA6和PA1短接。
采用DAC1_OUT1输出在内部连接到“比较器反向输入端”;
当DAC2_OUT1输出电压大于“VCC/2”时,开灯;
当DAC2_OUT1输出电压小于或等于“VCC/2”时,关灯;

1、比较器内部连接

如果我们不看表格,而是将DAC2_CH1连接到比较器1的反向输入端,那就大错特错了。

注意:在使用内部连接时,需要参考表“Table 197. COMPx inverting input assignment”。
随便连接,电路工作不正确
。 

STM32G474有3个DAC通道是带缓冲的外部通道 
PA4的附加功能为DAC1_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。
PA5的附加功能为DAC1_OUT2,无需映射,直接将它配置为模拟功能,就可以使用了。
PA6的附加功能为DAC2_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。

2、测试程序

COMP_HandleTypeDef hcomp1;
DAC_HandleTypeDef      DAC_1_Handler;
//DAC1句柄,若直接对寄存器DAC1->DHR12R1和DAC1->DHR12R2操作,就可以将其设置为局部变量

DAC_HandleTypeDef      DAC_2_Handler;
//DAC2句柄,若直接对寄存器DAC2->DHR12R1操作,就可以将其设置为局部变量

void COMP_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};

    __HAL_RCC_SYSCFG_CLK_ENABLE();
    //RCC_APB2ENR寄存器bit0(SYSCFGEN),SYSCFGEN=1,使能SYSCFG + COMP + VREFBUF + OPAMP时钟
    __HAL_RCC_PWR_CLK_ENABLE();
    //RCC_APB1ENR1寄存器bit28(PWREN),PWREN=1,启用电源接口时钟
    __HAL_RCC_GPIOA_CLK_ENABLE();//开启GPIOA时钟

    GPIO_InitStruct.Pin = GPIO_PIN_1;            //选择引脚编号为1
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;     //模拟模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器同向输入引脚”

    GPIO_InitStruct.Pin = GPIO_PIN_0;            //选择引脚编号为0
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;      //复用推挽模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    GPIO_InitStruct.Alternate = GPIO_AF8_COMP1;  //PA0映射到COMP1_OUT
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器输出引脚”

  hcomp1.Instance = COMP1;
  hcomp1.Init.InputPlus = COMP_INPUT_PLUS_IO1;
    //配置“比较器同向输入信号Vin+”来自PA1引脚
  hcomp1.Init.InputMinus = COMP_INPUT_MINUS_DAC2_CH1;
    //配置“比较器反向输入信号Vin-”来自“DAC2_CH1通道”
  hcomp1.Init.OutputPol = COMP_OUTPUTPOL_NONINVERTED;
    //配置比较器输出极性:当“Vin+ > Vin-”,则输出高电平
  hcomp1.Init.Hysteresis = COMP_HYSTERESIS_NONE;
    //Set comparator hysteresis mode of the input minus
  hcomp1.Init.BlankingSrce = COMP_BLANKINGSRC_NONE;
  hcomp1.Init.TriggerMode = COMP_TRIGGERMODE_NONE;
  HAL_COMP_Init(&hcomp1);

    __HAL_COMP_ENABLE(&hcomp1);
    //使能比较器
    //COMP_CxCSR寄存器bit0(EN),EN=1表示使能比较器

    HAL_COMP_Start(&hcomp1);//启动COMP1,Start COMP1

    DAC1_Init();
    DAC2_Init();
}

void DAC1_Init(void)
{
    DAC_ChannelConfTypeDef DAC1_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC1_CLK_ENABLE();  //使能DAC1时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_4;           //选择引脚编号为4
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_1_Handler.Instance = DAC1; //DAC1
    HAL_DAC_Init(&DAC_1_Handler);  //初始化DAC

    DAC1_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC1_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC1_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC1_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC1_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC1_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC1_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC1_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;//允许内部连接DAC1_CH1
  DAC1_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式
  HAL_DAC_ConfigChannel(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_1_Handler,DAC_CHANNEL_1); //开启DAC1通道1                  
    
//    HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

    DAC1->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
}

void DAC2_Init(void)
{
    DAC_ChannelConfTypeDef DAC2_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC2_CLK_ENABLE();  //使能DAC2时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_6;           //选择引脚编号为6
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_2_Handler.Instance = DAC2; //DAC2
    HAL_DAC_Init(&DAC_2_Handler);  //初始化DAC

    DAC2_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC2_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC2_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC2_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC2_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC2_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC2_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC2_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; //不允许内部连接DAC2_CH1
  DAC2_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式  
  HAL_DAC_ConfigChannel(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_2_Handler,DAC_CHANNEL_1); //开启DAC2通道1                  
    
    HAL_DAC_SetValue(&DAC_2_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
//    DAC2->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

}

void Test_COMP(void)
{
    uint32_t dac_steps = 0UL;
    uint32_t dac_Value;

  while (1)
    {
        dac_Value=dac_steps*DAC_SAWTOOTH_STEPINC;
        printf("dac_Value=0x%X\r\n",dac_Value);
        HAL_DAC_SetValue(&DAC_2_Handler, DAC_CHANNEL_1,DAC_ALIGN_12B_R,dac_Value );
        HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
        dac_steps++;
    if (dac_steps > DAC_SAWTOOTH_STEPS){ dac_steps = 0; }
        HAL_Delay(4);//延时4ms
        if (HAL_COMP_GetOutputLevel(&hcomp1) == COMP_OUTPUT_LEVEL_HIGH)
    {//COMP_CxCSR寄存器bit30(VALUE),VALUE=1表示比较器输出为高电平
      LED1_On();
    }
    else
    {
      LED1_Off();
    }
    }
}
 

comp.h文件如下:

#ifndef __COMP_H__
#define __COMP_H__#include "stm32g4xx_hal.h"
//使能int8_t,int16_t,int32_t,int64_t
//使能uint8_t,uint16_t,uint32_t,uint64_t#define DAC_VALUE_MAX         ((uint32_t) 4095)  //DAC的最大电压为4095*3.3/4096=3.299V
#define DAC_SAWTOOTH_STEPS    ((uint32_t) 45)    //DAC的总步数
#define DAC_SAWTOOTH_STEPINC  ( (uint32_t) DAC_VALUE_MAX/DAC_SAWTOOTH_STEPS )
//DAC每走1步的增量值extern void COMP_Init(void);
extern void Test_COMP(void);
#endif /*__ GPIO_H__ */

3、比较器输出波形

这篇关于STM32G474之使用DAC1和DAC2测试模拟比较器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141167

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互