指数分布的两种形式

2024-09-04 18:44
文章标签 两种 形式 指数分布

本文主要是介绍指数分布的两种形式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

指数分布是连续概率分布的一种,常用于描述等待时间、寿命等随机变量的分布。

1. 标准形式的指数分布

标准形式的指数分布的概率密度函数(PDF)为:

f ( x ; λ ) = { λ e − λ x if  x ≥ 0 0 if  x < 0 f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} f(x;λ)={λeλx0if x0if x<0

其中, λ > 0 \lambda > 0 λ>0 是速率参数(rate parameter),表示单位时间内发生某事件的平均次数。

  • 累积分布函数(CDF)

F ( x ; λ ) = { 1 − e − λ x if  x ≥ 0 0 if  x < 0 F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} F(x;λ)={1eλx0if x0if x<0

  • 期望(均值) 1 λ \frac{1}{\lambda} λ1
  • 方差 1 λ 2 \frac{1}{\lambda^2} λ21

2. 通过尺度参数变换的指数分布

为了和正态分布PDF等其他指数家族函数作类比分析,也会使用尺度参数(scale parameter) θ \theta θ 来代替率参数 λ \lambda λ。此时,概率密度函数变为:

f ( x ; θ ) = { 1 θ e − x θ if  x ≥ 0 0 if  x < 0 f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} f(x;θ)={θ1eθx0if x0if x<0

其中, θ > 0 \theta > 0 θ>0 是尺度参数,表示平均等待时间或平均寿命等。

  • 注意:这里的 θ \theta θ λ \lambda λ 是倒数关系,即 θ = 1 λ \theta = \frac{1}{\lambda} θ=λ1

  • 累积分布函数(CDF)

F ( x ; θ ) = { 1 − e − x θ if  x ≥ 0 0 if  x < 0 F(x; \theta) = \begin{cases} 1 - e^{-\frac{x}{\theta}} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} F(x;θ)={1eθx0if x0if x<0

  • 期望(均值) θ \theta θ
  • 方差 θ 2 \theta^2 θ2

在这种表示下, θ \theta θ是分布的均值,它的极大似然估计是样本均值。 λ \lambda λ 越小,也就是 θ \theta θ越大越拖尾。
在这里插入图片描述

MATLAB中,expfit和mle函数计算参数的极大似然估计。

很神奇,很多分布的PDF都是指数函数。例如常见的高斯函数,也就是正态分布的概率密度函数也是指数家族函数:

f ( x ∣ μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(xμ,σ2)=2πσ2 1e2σ2(xμ)2

方差 σ 2 \sigma^2 σ2 越小,曲线越陡峭,表示数据越集中;方差越大,曲线越平坦,表示数据越分散。

这篇关于指数分布的两种形式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136728

相关文章

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

MySQL集群高可用架构的两种使用小结

《MySQL集群高可用架构的两种使用小结》本文介绍了MySQL的两种高可用解决方案:组复制(MGR)和MasterHighAvailability(MHA),文中通过示例代码介绍的非常详细,对大家的学... 目录一、mysql高可用之组复制(MGR)1.1 组复制核心特性与优势1.2 组复制架构原理1.3

Java8 Collectors.toMap() 的两种用法

《Java8Collectors.toMap()的两种用法》Collectors.toMap():JDK8中提供,用于将Stream流转换为Map,本文给大家介绍Java8Collector... 目录一、简单介绍用法1:根据某一属性,对对象的实例或属性做映射用法2:根据某一属性,对对象集合进行去重二、Du

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

MyBatis流式查询两种实现方式

《MyBatis流式查询两种实现方式》本文详解MyBatis流式查询,通过ResultHandler和Cursor实现边读边处理,避免内存溢出,ResultHandler逐条回调,Cursor支持迭代... 目录MyBATis 流式查询详解:ResultHandler 与 Cursor1. 什么是流式查询?

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time