Python(TensorFlow)和MATLAB及Java光学像差导图

2024-09-04 18:28

本文主要是介绍Python(TensorFlow)和MATLAB及Java光学像差导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 几何光线和波前像差计算
  2. 入瞳和出瞳及近轴光学计算波前像差
  3. 特征矩阵方法计算光谱反射率、透射率和吸光度
  4. 透镜像差和绘制三阶光线像差图和横向剪切干涉图
  5. 分析瞳孔平面焦平面和大气湍流建模
  6. 神经网络光学像差计算
  7. 透镜光线传播几何偏差计算
  8. 像差和像散
  9. 色差纠正对齐定位,计算多边形统计数据
  10. 分子图像分析
  11. 神经网络多尺度算法预测
  12. 聚焦光场矢量计算
  13. 非球面反射望远镜偏差算法
    在这里插入图片描述

Python望远镜色差

完美透镜具有抛物线形状,因此它会对入射波施加二次相位,并且尺寸无限大。这种透镜将输入平面波聚焦到焦点处的单个点,或者在满足成像条件时,它可以将点物体成像为一个点:
1 u + 1 v = 1 f \frac{1}{u}+\frac{1}{v}=\frac{1}{f} u1+v1=f1
其中 u u u是镜头与物体之间的距离, v v v是镜头与图像之间的距离, f f f是镜头的焦距。根据几何光学,点源将产生点图像。然而,即使使用完美的镜头,点源也不会产生点像,而是会产生模糊盘。这个模糊盘称为点扩展函数,它表示成像系统的空间分辨率。这是由于有限的镜头光圈导致一些光束离开点源并错过镜头。因此,图像的分辨率是镜头或成像系统光圈大小的函数。如果镜头是完美的,没有任何像差,则点源的图像大小,即PSF,为:
P S F = 4 λ ν π D PSF=\frac{4 \lambda \nu}{\pi D} PSF=πD4λν
其中 D D D是镜头光圈, v v v是到图像的距离, λ \lambda λ是波长。显然,当我们增加镜头尺寸时,PSF 更小,这意味着分辨率更高。此外,靠近镜头并减少 v v v 可以提高分辨率。然而,即使透镜无限大并且来自点光源的所有光都进入透镜,由于光的波动方面,图像也不能小于波长的一半。这也可以在波长相关函数中看到。减小波长将减小 PSF 并提高分辨率。然而,为了观察这些效应,我们必须离开几何光学并考虑波动光学。

最常见的像差类型是散焦。在散焦中,图像会失焦,因为探测器没有精确地位于图像平面上。在这种情况下,点物体会产生更大的模糊盘,也就是说,我们有更大的点扩展函数,这会导致图像分辨率降低。PSF 的大小与与图像平面的距离 z 的关系为:
PSF ⁡ ( z ) = PSF ⁡ ( 0 ) 1 + ( z λ π P S F ( 0 ) 2 ) 2 \operatorname{PSF}(z)=\operatorname{PSF}(0) \sqrt{1+\left(\frac{z \lambda}{\pi P S F(0)^2}\right)^2} PSF(z)=PSF(0)1+(πPSF(0)2zλ)2
这里,当 z z z小时,PSF的大小缓慢增加,但当 z z z大时,PSF的大小随 z z z线性增加。因此,即使稍微失焦,PSF 也不会受到影响。这个范围称为瑞利范围,它决定了我们系统的焦深。如果焦深很大,我们就不需要那么精确,不同距离的不同物体仍然可以对焦。然而,当焦深较小时,只有一个物体会被聚焦,从而导致物体清晰而背景模糊的美丽图像。焦深 b b b 的计算公式为:
b = π P S F ( 0 ) 2 2 λ b=\frac{\pi P S F(0)^2}{2 \lambda} b=2λπPSF(0)2
因此,较小的光斑会导致较小的焦深。因此,当光圈较大时,我们可以获得较高的分辨率和较低的焦深。

第二种像差是探测器没有根据图像平面定向。这会导致 PSF 成为平面位置的函数。图像中心的分辨率可能很高,而沿着特定轴的分辨率会较低。如果倾斜足够大,PSF 将变成不对称椭圆。我们可以根据泽尼克多项式定义倾斜:
T x = A x cos ⁡ ( α ) T y = A y sin ⁡ ( α ) \begin{aligned} & T_x=A_x \cos (\alpha) \\ & T_y=A_y \sin (\alpha) \end{aligned} Tx=Axcos(α)Ty=Aysin(α)
因此,这种类型的像差也很容易通过沿着图像平面正确定位探测器来解决。

任何玻璃都有一定的色散,色散取决于波长。因此,折射率是波长的函数,因此透镜焦距也是波长的函数。通常,折射率与波长的关系为 1 0 − 4 10^{-4} 104,当我们使用宽带光成像或焦距较短且镜头较厚时,它开始影响成像,因此折射率的影响分散度高。为了克服望远镜中的色差,我们可以用镜子代替镜头。镜子将所有波长反射到同一方向,因此没有色差。此外,可以将两个镜头组合在一起,每个镜头由不同类型的玻璃制成,在所需的带宽下具有相反的色差,这样它们的色差就会相互抵消。

Python色差

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from scipy import signal
import math

定义用于拟合垂直切片的模型函数

def gauss(x, *p):A, mu, sigma = preturn A*np.exp(-(x-mu)**2/(2.*sigma**2))

假设一个简单的线性校准定律

def compute_fwhm_data(filename,ref_wavelength_1_x,ref_wavelength_2_x,ref_wavelength_1=3948,ref_wavelength_2=7032,wavelength1=4000,wavelength2=7000,bin_size=50):rate = (ref_wavelength_2 - ref_wavelength_1) / (ref_wavelength_2_x - ref_wavelength_1_x)offset = 3948 - 527 * ratex1 = math.floor((wavelength1 - offset) / rate)x2 = math.ceil((wavelength2 - offset) / rate)image = fits.open(filename)imageData = image[0].datacleanImageData = signal.medfilt2d(imageData, kernel_size=3)sliceData = cleanImageData[:, x1:x2]width = len(sliceData[0])height = len(sliceData)fwhmData = [0] * widthfor columnIndex in np.arange(width):columnValues = sliceData[:, columnIndex]maxIndex = np.argmax(columnValues)background = np.concatenate((columnValues[ : maxIndex-bin_size], columnValues[maxIndex + bin_size : ]))backgroundValue = np.mean(background, axis=0)columnValues = np.subtract(columnValues, backgroundValue)maxValue = columnValues[maxIndex]spectrum = columnValues[maxIndex - bin_size : maxIndex + bin_size]maxIndex = np.argmax(spectrum)xdata = np.arange(len(spectrum))p0 = [maxValue, maxIndex, 3]coeff, var_matrix = curve_fit(gauss, xdata, spectrum, p0=p0)A, mu, sigma = coefffwhmData[columnIndex] = 2 * sigma fwhmData_smooth = signal.savgol_filter(fwhmData, 80, 3)min = np.min(fwhmData_smooth)normalized = fwhmData_smooth / minreturn normalized
def calculate_score(fwhmData):return len(fwhmData) / np.sum(fwhmData)
def get_for_wavelength(fwhmData,wavelength,wavelength1=4000,wavelength2=7100):step = len(fwhmData) / (wavelength2 - wavelength1)index = math.floor((wavelength - wavelength1) * step)return fwhmData[index]
rc10_fwhmData = compute_fwhm_data(filename="data/RC10/SSC.fits",ref_wavelength_1_x=414,   ref_wavelength_2_x=1865,  ref_wavelength_1 = 4047,ref_wavelength_2 = 6300,
)step = (7000 - 4000) / len(rc10_fwhmData)
xdata = np.arange(4000, 7000, step)plt.figure(figsize=(16, 8))
plt.title("Longitudinal Chromatic Aberration")
plt.plot(xdata, rc10_fwhmData, label="RC10", color='gray')
plt.xlabel("Wavelength in Å")
plt.ylabel("FWHM / FWHM min")
plt.xlim(4000, 7000)
plt.ylim(0, 5)
plt.legend();print("score (the higher — up to 1.0 — the better):")
print(f"RC10 -> {calculate_score(rc10_fwhmData):.2f}")

👉更新:亚图跨际

这篇关于Python(TensorFlow)和MATLAB及Java光学像差导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136687

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2