yarn ResourceManager Active频繁易主问题排查

2024-09-04 17:18

本文主要是介绍yarn ResourceManager Active频繁易主问题排查,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、故障现象
    • 二、问题分析
      • RM的HA机制分析
      • ZK问题分析
      • 部分任务状态更新失败问题分析
    • 三、解决和优化方案
      • 1. 调大 jute.maxbuffer 参数
      • 2. 修改yarn的源码
      • 3. 快速让集群恢复稳定的方法
    • 四、总结

本周三公司的yarn集群出现故障,导致两台ResourceManger频繁易主,并且许多提交到集群的任务状态为 NEW_SAVING,无法执行。这里对此次的故障排查进行一个总结。

一、故障现象

  1. 两个节点的ResourceManger频繁在active和standby角色中切换。不断有active易主的告警发出
  2. 许多任务的状态没能成功更新,导致一些任务状态卡在NEW_SAVING无法进入调度(还有许多资源空闲)

看了下ResourceManger的日志,发现大量以下错误:

org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss

在这里插入图片描述
在这里插入图片描述

从日志可以看出是在操作zk时出现了错误,并且会进行重试。RM在重试1000次后才会放弃尝试。并且从日志可以看出,这是在更新任务appattempt_1535616282827_1432747_000002的状态时发生的异常

紧接着后面还发现另外一条日志,表示此时RM的状态进入了standby:

2019-03-20 14:37:48,914 INFO org.apache.hadoop.yarn.server.resourcemanager.ResourceManager: Transitioning to standby state

RM进入standby状态前会将对应的ZK节点/yarn/ActiveStandbyElectorLock删除,然后再转到standby状态。这时两台RM同时开始竞争尝试新建/yarn/ActiveStandbyElectorLock节点,谁竞争到谁就是active。

成为active的节点又收到appattempt_1535616282827_1432747_000002的状态更新,就尝试更新zk节点的数据,然后又发生上面的错误,重试1000次后转为standby。如此一直重复下去,直到人为介入kill了该任务,集群才恢复正常。

因为是zk操作的问题,所以看了下zk的日志,也发现了异常:

2019-03-20 14:37:40,141 [myid:1] - WARN  [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@362] - Exception causing close of session 0x16324e8243d0003 due to java.io.IOException: Len error 2186401
2019-03-20 14:37:40,142 [myid:1] - INFO  [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@1007] - Closed socket connection for client /192.168.142.10:23412 which had sessionid 0x16324e8243d0003

从日志上看,只有appattempt_1535616282827_1432747_000002这个任务状态会更新失败,其他任务的状态都可以正常更新,有一些任务会因为zk连接被关闭而更新失败,这个后面解释原因。

二、问题分析

RM的HA机制分析

之前一直以为RM只有在和zk失联,/yarn/ActiveStandbyElectorLock节点断开后才会进行易主。但是这次的异常却颠覆了我的认知。于是去跟了下yarn的源码。发现还有一种情况可能导致RM从active状态切换到standby状态。

RM在进行任务状态更新时,会进行对应的zk操作,也就是将任务的相关信息存储到zk。如果这个失败,RM会进行重试,这个重试的次数可以通过yarn.resourcemanager.zk-num-retries配置,默认是1000次。当对应的zk操作失败重试达到1000次,RM就会将状态切换到standby

具体可能导致active切换成standby的操作有以下这些:

  1. storeApplicationStateInternal
  2. updateApplicationStateInternal
  3. removeApplicationStateInternal
  4. storeApplicationAttemptStateInternal
  5. updateApplicationAttemptStateInternal
  6. storeRMDelegationTokenState
  7. removeRMDelegationTokenState
  8. updateRMDelegationTokenState
  9. storeRMDTMasterKeyState
  10. removeRMDTMasterKeyState
  11. storeOrUpdateAMRMTokenSecretManagerState

所以我们上面的故障很明显就是在某个任务的updateApplicationAttemptStateInternal操作出现异常后,才导致active在两个RM节点间不断切换的。

如果配置了多个RM,客户端根据yarn-site.xml的配置会采用round-robin的方式逐个去连接RM,直到找到active 节点位置。所以即使active节点切换,在运行中的客户端也能通过这种方式重新找到新的Active RM进行连接。

ZK问题分析

上面的故障其实归根结底还是zk的问题。zk的这条日志Exception causing close of session 0x16324e8243d0003 due to java.io.IOException: Len error 2186401也很明确的表明是由于客户端发来的请求包太大,zk主动关闭了连接。

上网搜了下zk的Len error的问题,发现也有一些人碰到过。甚至找到两个相关的issue,一个是yarn的,一个是zookeeper的:

https://issues.apache.org/jira/browse/YARN-3469

https://issues.apache.org/jira/browse/ZOOKEEPER-706

其中zk的issue是说如果一个请求要注册的watcher太多,会导致Len error的问题。因此这个issue的patch是将这些watcher分成多个请求发送,这样就不会导致请求过大的问题了。刚好修复版本是3.4.7,而我们集群用的zk版本是3.4.6

yarn的issue是说之前的版本设置了过多无用的watcher,导致某个请求太大,出现Len error的问题。因此yarn这边做的修复是不在注册无用的watcher。修复版本是2.6.0,我们集群用的版本是2.7.4,因此我们集群应该不会有这个问题

因为排查时已经无法找到那个请求包的具体内容,这两个issue看上去又很有说服力。虽然yarn已经修复了注册过多无用watcher的,但是可能还有一些地方还有类似的问题呢。

本来以为问题大概就是这样了,我们已经准备升级zk版本了。突然又想到失败的zk操作是updateApplicationAttemptStateInternal,它底层的zk操作是setData,而setData是不会注册任何watcher的。因此这个问题和watcher没有任何关系。

后面继续排查,发现下面这篇博客:

https://www.jishuwen.com/d/2BBc/zh-hk#tuit

和我们的故障现象很像,于是追到了博客提到的yarn的issue:

https://issues.apache.org/jira/browse/YARN-2368

ResourceManager failed when ZKRMStateStore tries to update znode data larger than 1MB。也就是我们遇到的问题。就是要更新的任务信息过大导致的,和watcher没有关系

这issue并没有修复的版本,看了下它的patch,就是加了一个配置,用来指定jute.maxbuffer,也就是通过调大zk的阀值来避免出现该问题

部分任务状态更新失败问题分析

从日志看,只有appattempt_1535616282827_1432747_000002这个任务因为更新内容过大导致zk操作失败。但是故障时看到的现象确实许多任务状态都卡在NEW_SAVING无法更新。这是为什么呢?

通过分析日志,可以很容易得出结论。RM在更新appattempt_1535616282827_1432747_000002状态失败时,zk服务端主动断掉了连接,RM在下次重试时就会再次尝试建立连接。

因为任务状态更新用的zk连接可能是同一个,如果要更新时刚好连接被关闭了,任务肯定无法成功更新。因此才会有部分任务状态可以更新,部分任务状态无法更新的现象。

在RM的日志中我们也可以看到许多下面的Broken pipe异常:

在这里插入图片描述

三、解决和优化方案

1. 调大 jute.maxbuffer 参数

通过调大jute.maxbuffer来让zk可以接受更大的请求包而不会抛出IOException。这个参数的默认值是1M。

注意,这个不是在zk的配置文件中设置。而是作为java参数在启动zk时设置,也就是-Djute.maxbuffer=xxxx的方式

另外,根据zk的文档,这个参数在所有的客户端和zk服务端都要设置,否则会有更多的问题产生。也就是说,我们需要在yarn这边也设置这个参数。

这种方式有点治标不治本,因为我们无法知道任务信息最大可能到多少。设置过大的值也不是个好主意。最重要的是这个方案要同时对yarn和zk进行重启,风险略高。

2. 修改yarn的源码

虽然知道了问题的原因所在,但是我们还不知道为什么那个任务会产生那么大的任务信息。所以我们对zk的端口进行抓包查看正常的任务信息的请求都有多大:

在这里插入图片描述

通过抓包的结果,我们发现正常任务包的大小其实都只有几K,最高不会超过5K。所以我们打算修改yarn的源码过滤掉那些大小超过1M的任务更新请求,同时把这些大于1M的请求内容打印出来。

这样做一方面是为了避免后面因为某个任务的更新失败又导致集群出现问题,另一方面也可以观察到为什么有的任务会产生那么大的信息。

附上更新的代码,ZKRMStateStore#updateApplicationAttemptStateInternal()

    byte[] attemptStateData = attemptStateDataPB.getProto().toByteArray();//测试环境可以加上下面这个日志,实时观察各个任务信息的大小
LOG.info(String.format("attempId:%s,len:%s",attemptStateDataPB.getAttemptId(),attemptStateData.length));//如果任务信息超过了950K,就打出error日志,输出任务信息,同时直接返回,不再往zk发送请求if(attemptStateData.length > 972800){LOG.error(String.format("attemptStateData len larger than 1M.len:%s,nodeUpdatePath:%s,data:%s,attemptId:%s,Diagnostics:%s,traceUrl:%s,container%s",attemptStateData.length,nodeUpdatePath,String.valueOf(attemptStateData),attemptStateDataPB.getAttemptId(),attemptStateDataPB.getDiagnostics(),attemptStateDataPB.getFinalTrackingUrl(),attemptStateDataPB.getMasterContainer()));return;}//往zk发送请求更新任务信息if (existsWithRetries(nodeUpdatePath, false) != null) {setDataWithRetries(nodeUpdatePath, attemptStateData, -1);} else {createWithRetries(nodeUpdatePath, attemptStateData, zkAcl,CreateMode.PERSISTENT);LOG.debug(appAttemptId + " znode didn't exist. Created a new znode to"+ " update the application attempt state.");}

3. 快速让集群恢复稳定的方法

如果集群又发生了类似的问题,可以找到任务的ApplicationMaster所在的Container,然后上目标服务器将对应的Container进程kill掉,后面RM就不会再更新该任务的信息,而是将任务直接转为Kill状态。

四、总结

此次故障大概持续了2个半小时才恢复,还是刚好业务同学手动kill了那个任务的container进程,最终才没有一直切换下去。

因为之前对yarn只有原理上的认知,并没有看过yarn的代码,对yarn状态机的相关知识也了解不多。所以在故障发生时有点手足无措,不知道从何下手排查。

此刻回想起来真的很侥幸,因为这个故障不是重启一下RM就能恢复的。如果业务同学没有刚好kill那个container进程,可能我们要一直排查到分析出问题的根本原因为止,至少要多半天的时间。

后面还是要多看看集群各个组件的源码,深入了解他们的架构,争取出现问题时能更快的定位到问题并修复。

这篇关于yarn ResourceManager Active频繁易主问题排查的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136540

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g