抽奖摇号系统随机性算法介绍

2024-09-04 16:38

本文主要是介绍抽奖摇号系统随机性算法介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 
参考视频教程:  
 **高并发高性能 Go语言开发企业级抽奖项目  **

  1. 摘要
    =====

本文分析GO语言包中的"crypto/rand"和"math/rand",芯链HPB系统的区块链随机数,并给出了权衡效率和随机性,并给出了一款区块链摇号抽奖系统如何实现随机数的算法和流程。

  1. 背景知识
    =======

2.1 真随机和伪随机概念

根据密码学原理,要想对一个"随机数"进行随机性检验有以下几个标准:

  • 统计学伪随机性 - 在给定的随机比特流样本中,1 的数量大致等于 0 的数量,也就是说,“10""01""00""11” 四者数量大致相等。说人话就是:“一眼看上去是随机的”。
  • 密码学安全伪随机性 - 就是给定随机样本的一部分和随机算法,不能有效的演算出随机样本的剩余部分。
  • 真随机性 - 其定义为随机样本不可重现。

根据以上几个标准,其对应的随机数也就分为以下几类:

  • 伪随机数 - 满足第一个条件的随机数。
  • 密码学安全的伪随机数 - 同时满足前两个条件的随机数。可以通过密码学安全伪随机数生成器计算得出
  • 真随机数 -同时满足三个条件的随机数

2.2 GO语言包的随机函数包介绍

2.2.1 math/rand 包

math/rand 包实现了伪随机数生成器,就是如果使用相同的种子来生成两个 Rand 实例,对这两个实例进行相同次序和函数的调用,那么将会得到两串 完全相同 的输出。如果两个 Rand 对象使用了不同的值来做种子,就不具有这种相同的行为了。但是math/rand 包在接口丰富性和效率方面比较好。

2.2.1.1 主要方法

(1)func Seed(seed int64)
设置随机种子,不设置则默认Seed(1)
(2)func Intn(n int) int
返回一个取值范围在[0,n)的伪随机int值,如果n<=0会panic
(3)func Perm(n int) []int
返回一个有n个元素的,[0,n)范围内整数的伪随机排列的切片

2.2.1.2 应用场景

(1)验证码
(2)随机密码
(3)抽奖
(4)随机算法

2.2.2 crypto/rand 包

crypto/rand 包实现了用于加解密的更安全的随机数生成器,其中有个变量 Reader io.Reader。Reader是一个全局、共享的密码用强随机生成器。在Unix类型系统中,会从/dev/urandom读取,而windows中会调用CryptGenRandom API。

在Unix 内核中的随机数发生器(/dev/random),理论上它能产生真随机。即这个随机数的生成,独立于生成函数,这时我们说这个随机数发生器是非确定的。具体来讲,Unix 维护了一个熵池,不断收集非确定性的设备事件,即机器运行环境中产生的硬件噪音,来作为种子。比如说,时钟,IO 请求的响应时间,特定硬件中断的时间间隔,键盘敲击速度,鼠标位置变化,甚至周围的电磁波等等……直观地讲,你每按一次键盘,动一下鼠标,邻居家 wifi 信号强度变化,磁盘写入速度等等信号,都可能被用来生成随机数。更具体的,内核提供了向熵池填充数据的接口,比如鼠标的大概就长成这样:void add_mouse_randomness(__u32 mouse_data) 内核子系统和驱动调用这个函数,把鼠标的位置和中断间隔时间作为噪音源填充进熵池。

在Windows环境中,一个健壮的随机函数是:CryptGenRandom(),定义在Wincrypt.h。CryptGenRandom从Windows2000的众多的资源中,获得其随机性[也称作"熵"(entropy)]:①当前进程的ID;②当前线程的ID;③系统引导以来的时钟数;④各种高精度的性能计数器;⑤用户环境模块的MD4(Message Digest 4,信息摘要4)散列,包括用户名,计算机名和搜索路径等;⑥高精度的内部CPU计算器,如RDISC,ROMSR,RDPM等;⑦底层系统信息,如空闲时间,内检时刻,中断时间,提交限定,页面计数,缓存计数,操作系统外部计数等。
CryptGenRandom跟硬件关联,具有真正的随机性和不可预测性。

2.2.2.1 主要方法

(1)func Int(rand io.Reader, max *big.Int) (n *big.Int, err error)
返回一个在[0, max)区间服从均匀分布的随机值,如果max<=0则会panic

(2)func Prime(rand io.Reader, bits int) (p *big.Int, err error)
返回一个具有指定字位数(二进制的位数)的数字,该数字具有很高可能性是质数(除了1和它自身外,不能被其他自然数整除的数叫做质数)。如果从rand读取时出错,或者bits<2会返回错误

(3)func Read(b []byte) (n int, err error)
本函数是一个使用io.ReadFull调用Reader.Read的辅助性函数。当且仅当err == nil时,返回值n == len(b)

2.2.2.2 应用场景

(1)生成随机加密串

2.3 HPB区块链系统的随机数介绍

2.3.1 HPB 随机数生成器

HPB 随机数生成器是架构在区块链的一种基础服务。随机数的实际实生产者为所有高性能节点(矿机)。随机数服务的产生依赖与区块链提供的共识服务和数据同步服务。如下图 1 所示,HPB随机数生成器有三层架构:随机数种子生成层,随机数计算层(验证层)和随机数调用层。

  1. 随机数种子层负责产生硬件随机数种子,种子层一般有硬件担任。
  2. 随机数计算层读取硬件随机数种子,将其写入每一个区块中,并收集之前区块中的种子,在共识算法的带动下生成最终的随机数。同时使用 VRF1可验证函数辅助进行动态种子周期变换保证随机数安全,以防止任意一个或者多个的随机数生产者的攻击。
  3. 随机数接口层提供了随机数读取接口,方便用户使用。

2.3.2 HPB接口方式获取随机数

HPT区块链系统可以通过RPC接口获取历史随机数。

**1,接口定义 **
(1)通过RPC接口获取历史随机数
接口名称 :hpb_getRandom
参数 :块号 ,整形数字或者字符串"latest"
返回值:随机数,string,

(2)使用"latest"查询最新块中的随机数
调用示例:
curl -X POST -H “Content-Type: application/json” –data
‘{“jsonrpc”:“2.0”,“method”:“hpb_getRandom”,“params”:[“latest”],“id”:1}’ http://127.0.0.1:8545
返回示例:
{“jsonrpc”:“2.0”,“id”:1,“result”:“0x45e5b62b748859b8eaf245406f5734244c5fef80d65f973b0a96407cf733db5
1”}

(3)查询指定块号的随机数
调用示例:
curl -X POST -H “Content-Type: application/json” –data
‘{“jsonrpc”:“2.0”,“method”:“hpb_getRandom”,“params”:[“0x3f21”],“id”:1}’ http://127.0.0.1:8545
返回示例
{“jsonrpc”:“2.0”,“id”:1,“result”:“0x45e5b62b748859b8eaf245406f5734244c5fef80d65f973b0a96407cf733db5
1”}

2.3.3 HPB智能合约方式获取随机数

HPT区块链系统可以通过通过智能合约使用最新随机数;

在智能合约中使用最新的随机数,方式十分简单,只需要调用block.random即可返回随机数。
合约需要使用HPB官方的solidity编译器进行编译才能生效。

**合约示例 **


pragma solidity ^0.5.1;
contract MYTEST{bytes32 random;function getrandom()public {random = block.random;}function print() view public returns(bytes32){return random;}
}

上述合约示例通过在HPB主网上部署后,执行getrandom函数,则将最新的随机数写入random变量。然后通过
print函数打印随机数。

  1. 实现方案
    =======

3.1 随机数算法选择

在生活中,抽奖摇号无所不在,涉及经济、民生、教育、医疗、政务、住房、养老和娱乐等各个领域,如口罩预约摇号、彩票抽奖、车牌摇号、股票打新、入学摇号、新房摇号。参与大众关心抽奖摇号系统的公平透明公正性,担心这些系统是否因为中心化人为控制的原因,导致形成潜在的利益输送,丧失抽奖摇号本身宣传的公平透明公正的原则。

那么,开发一款区块链抽奖摇号系统,利用HPB区块链真随机数、时间可信、内容不可篡改、数据可追溯可查询等特性,可以解决大众的担忧,实现真正的公平。

3.2 摇号的算法流程

3.3 抽奖的算法流程

这篇关于抽奖摇号系统随机性算法介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136457

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听