Segment Tree题型总结

2024-09-04 14:48
文章标签 总结 tree 题型 segment

本文主要是介绍Segment Tree题型总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Segment Tree 的基本操作 Segment Tree Build, Segment Tree Query, Segment Tree Modify 必须熟练掌握;

线段树长什么样子,就是上面的样子,注意到数组A并不要求是sort的,range 是index的范围,每个leaf节点就是A中每个element. 

Interval Sum 思路:其实,这个题目是为了后面的follow up做准备的,LogN time for query; 如果数组是个动态的, 那么就要用到segment tree或者树状数组;现在这里用segment tree来做解答;Time: m Log(K) , m是query的次数,K是数组里面的最大值;Space: O(N) 

/*** Definition of Interval:* public classs Interval {*     int start, end;*     Interval(int start, int end) {*         this.start = start;*         this.end = end;*     }* }*/public class Solution {/*** @param A: An integer list* @param queries: An query list* @return: The result list*/public List<Long> intervalSum(int[] A, List<Interval> queries) {List<Long> list = new ArrayList<>();SegmentTree segmentTree = new SegmentTree(A);for(Interval interval: queries) {list.add(segmentTree.query(interval.start, interval.end));}return list;}private class SegmentTreeNode {public int start, end;public long sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {node.sum = A[start];return node;}int mid = start + (end - start) / 2;node.left = buildTree(A, start, mid);node.right = buildTree(A, mid + 1, end);node.sum = node.left.sum + node.right.sum;return node;}private long querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;long leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}public long query(int start, int end) {return querySum(root, start, end);}}
}

Interval sum II 思路:如果数组modify的话,那么prefixsum就没有什么用了,因为sum需要O(N),所以这题正确的解法还是segment Tree

public class Solution {/* you may need to use some attributes here *//** @param A: An integer array*/private SegmentTree tree;public Solution(int[] A) {tree = new SegmentTree(A);}/** @param start: An integer* @param end: An integer* @return: The sum from start to end*/public long query(int start, int end) {return tree.querySum(start, end);}/** @param index: An integer* @param value: An integer* @return: nothing*/public void modify(int index, int value) {tree.modify(index, value);}private class SegmentTreeNode {public int start, end;public long sum;public SegmentTreeNode left, right;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {node.sum = A[start];return node;}int mid = start + (end - start) / 2;node.left = buildTree(A, start, mid);node.right = buildTree(A, mid + 1, end);node.sum = node.left.sum + node.right.sum;return node;}private long querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;long leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void modify(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum = value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {modify(root.left, index, value);} else {modify(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public long querySum(int start, int end) {return querySum(root, start, end);}public void modify(int index, int value) {modify(root, index, value);}}
}

Count of Smaller Number 因为A已经给定了,所以可以用统计好的数组B来build tree;建立树是O(N),查询是mlog(n)

public class Solution {/*** @param A: An integer array* @param queries: The query list* @return: The number of element in the array that are smaller that the given integer*/public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {List<Integer> list = new ArrayList<Integer>();int[] B = new int[10001];for(int i : A) {B[i]++;}SegmentTree tree = new SegmentTree(B);for(int i : queries) {list.add(tree.querySum(0, i - 1));}return list;}private class SegmentTreeNode {public int start, end;public SegmentTreeNode left, right;public int sum;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {root.sum = A[start];return root;}int mid = start + (end - start) / 2;root.left = buildTree(A, start, mid);root.right = buildTree(A, mid + 1, end);root.sum = root.left.sum + root.right.sum;return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}public int querySum(int start, int end) {return querySum(root, start, end);}}
}

这里可以稍微优化一下,可以省去一个10001size的数组;把modify稍微改一下,变成add,建立一个空segment tree,然后一点点的往里面modify添加数据;建立数是O(N),查询是mlog(n)

public class Solution {/*** @param A: An integer array* @param queries: The query list* @return: The number of element in the array that are smaller that the given integer*/public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {List<Integer> list = new ArrayList<Integer>();SegmentTree tree = new SegmentTree(10001);for(int i : A) {tree.add(i, 1);}for(int i : queries) {if(i == 0) {list.add(0);} else {list.add(tree.querySum(0, i -1));}}return list;}private class SegmentTreeNode {public int start, end;public SegmentTreeNode left, right;public int sum;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int size) {this.size = size;this.root = buildTree(0, size - 1);}private SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {return root;}int mid = start + (end - start) / 2;root.left = buildTree(start, mid);root.right = buildTree(mid + 1, end);return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void add(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum += value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {add(root.left, index, value);} else {add(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void add(int index, int value) {add(root, index, value);}}
}

Count of Smaller Number before itself. 思路:用segment tree来记录当前点之前的所有的count,并且维护线段树的count,首先建立一个空的线段树,然后每次遇见一个数,把他的index node count值++,最后 querySum (0, A[i]-1)的线段count即可,注意一定要做一个特殊例子判断,就是A[i] == 0,比0小的数没有,因为数组是[0,10000] 的数,所以,没有,list直接加0,但是0这个node的count还是要++,因为他是其他比0大的数的小于的count;

public class Solution {/*** @param A: an integer array* @return: A list of integers includes the index of the first number and the index of the last number*/public List<Integer> countOfSmallerNumberII(int[] A) {List<Integer> list = new ArrayList<>();SegmentTree segmentTree = new SegmentTree(10001);for(int num: A) {if(num == 0) {list.add(0);} else {list.add(segmentTree.querySum(0, num - 1));}segmentTree.add(num, 1);}return list;}public class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}public class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree (int size) {this.size = size;this.root = buildTree(0, size - 1);}public SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {return node;}int mid = start + (end - start) / 2;node.left = buildTree(start, mid);node.right = buildTree(mid + 1, end);return node;}public int querySum(int start, int end) {return querySumHelper(root, start, end);}public int querySumHelper(SegmentTreeNode node, int start, int end) {if(node.start == start && node.end == end) {return node.sum;}int mid = node.start + (node.end - node.start) / 2;// node.start..........mid.......node.end;//              start.......end;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySumHelper(node.left, start, Math.min(mid, end));}if(mid + 1 <= end) {rightsum = querySumHelper(node.right, Math.max(mid + 1, start), end);}return leftsum + rightsum;}public void add(int index, int value) {addHelper(root, index, value);}public void addHelper(SegmentTreeNode node, int index, int value) {if(node.start == node.end && node.end == index) {node.sum += value;return;}int mid = node.start + (node.end - node.start) / 2;if(index <= mid) {addHelper(node.left, index, value);}if(mid + 1 <= index) {addHelper(node.right, index, value);}node.sum = node.left.sum + node.right.sum;}}
}

Count of Smaller Numbers After Self O(NlogN)算法沿用Count of Smaller numbers 和 count of smaller numbers before self。还是用线段树求解,但是这个题目有负数的情况,解决方法很简单,就是求得max和min之后,把整个数组解空间往右shift min位子就可以了。注意如果min > 0, 那么没必要shift; 那么segment tree的class一点都不需要改变,只需要把count的代码,每次+ Math.abs(min);把before的代码稍微改改就可以用了,注意题目要求是逆着count,所以list add的时候是add(0,count);

class Solution {public List<Integer> countSmaller(int[] nums) {List<Integer> list = new ArrayList<Integer>();if(nums == null || nums.length == 0) {return list;}int minvalue = nums[0], maxvalue = nums[0];for(int i : nums) {minvalue = Math.min(minvalue, i);maxvalue = Math.max(maxvalue, i);}// 因为有负数,所以需要shift 坐标 math.abs(minvalue), 但是如果minvalue > 0,则没必要shift;minvalue = Math.min(minvalue, 0);int size = maxvalue - minvalue + 1;SegmentTree tree = new SegmentTree(size);for(int i = nums.length - 1; i >= 0; i--) {if(nums[i] == minvalue) {list.add(0, 0);} else {list.add(0, tree.querySum(0, nums[i] + Math.abs(minvalue) - 1));}tree.add(nums[i] + Math.abs(minvalue), 1);}return list;}private class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int size) {this.size = size;this.root = buildTree(0, size - 1);}private SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {return root;}int mid = start + (end - start) / 2;root.left = buildTree(start, mid);root.right = buildTree(mid + 1, end);return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void add(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum += value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {add(root.left, index, value);} else {add(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void add(int index, int value) {add(root, index, value);}}
}

Range Sum Query - Mutable 思路:用segment tree,可以直接用array build tree,也可以先建立一个棵空的segment tree,然后每个index modify成(i, nums[i]),然后按照模板写出segment tree即可;Time Build Tree O(N),  query , modify O(logN).

class NumArray {private SegmentTree tree;public NumArray(int[] nums) {tree = new SegmentTree(nums);}public void update(int i, int val) {tree.modify(i, val);}public int sumRange(int i, int j) {return tree.querySum(i, j);}private class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {root.sum = A[start];return root;}int mid = start + (end - start) / 2;root.left = buildTree(A, start, mid);root.right = buildTree(A, mid + 1, end);root.sum = root.left.sum + root.right.sum;return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void modify(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum = value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {modify(root.left, index, value);} else {modify(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void modify(int index, int value) {modify(root, index, value);}}
}/*** Your NumArray object will be instantiated and called as such:* NumArray obj = new NumArray(nums);* obj.update(i,val);* int param_2 = obj.sumRange(i,j);*/

这篇关于Segment Tree题型总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136282

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel

9.8javaweb项目总结

1.主界面用户信息显示 登录成功后,将用户信息存储在记录在 localStorage中,然后进入界面之前通过js来渲染主界面 存储用户信息 将用户信息渲染在主界面上,并且头像设置跳转,到个人资料界面 这里数据库中还没有设置相关信息 2.模糊查找 检测输入框是否有变更,有的话调用方法,进行查找 发送检测请求,然后接收的时候设置最多显示四个类似的搜索结果