滴滴出行千亿级消息队列炼成记!

2024-09-04 10:58

本文主要是介绍滴滴出行千亿级消息队列炼成记!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文整理自滴滴出行消息队列负责人 江海挺 在Apache RocketMQ开发者沙龙北京站的分享。通过本文,您将了解到滴滴出行:

1. 在消息队列技术选型方面的思考;

2. 为什么选择 RocketMQ 作为出行业务的消息队列解决方案;

3. 如何构建自己的消息队列服务;

4. 在 RocketMQ 上的扩展改造实践;

5. 在 RocketMQ 上的实践经验。

 

江海挺:

滴滴出行消息队列负责人,Apache RocketMQ Contributor,大学毕业后一直在做消息队列领域相关的技术、产品和服务,积累了丰富的实践经验,沉淀了不少关于消息队列的思考。

 

 

滴滴出行的消息技术选型

 

1.1 历史

初期,公司内部没有专门的团队维护消息队列服务,所以消息队列使用方式较多,主要以Kafka为主,有业务直连的,也有通过独立的服务转发消息的。另外有一些团队也会用RocketMQ、Redis的list,甚至会用比较非主流的beanstalkkd。导致的结果就是,比较混乱,无法维护,资源使用也很浪费。

 

1.2 为什么弃用 Kafka

一个核心业务在使用Kafka的时候,出现了集群数据写入抖动非常严重的情况,经常会有数据写失败。

主要有两点原因:

  • 随着业务增长,Topic的数据增多,集群负载增大,性能下降;

  • 我们用的是Kafka0.8.2那个版本,有个bug,会导致副本重新复制,复制的时候有大量的读,我们存储盘用的是机械盘,导致磁盘IO过大,影响写入。

所以我们决定做自己的消息队列服务。

首先需要解决业务方消息生产失败的问题。因为这个Kafka用的是发布/订阅模式,一个topic的订阅方会有很多,涉及到的下游业务也就非常多,没办法一口气直接替换Kafka,迁移到新的一个消息队列服务上。所以我们当时的方案是加了一层代理,然后利用codis作为缓存,解决了Kafka不定期写入失败的问题,如上图。当后面的Kafka出现不可写入的时候,我们就会先把数据写入到codis中,然后延时进行重试,直到写成功为止。

1.3 为什么选择 RocketMQ

经过一系列的调研和测试之后,我们决定采用RocketMQ,具体原因在后面会介绍。

为了支持多语言环境、解决一些迁移和某些业务的特殊需求,我们又在消费侧加上了一个代理服务。然后形成了这么一个核心框架。业务端只跟代理层交互。中间的消息引擎,负责消息的核心存储。在之前的基本框架之后,我们后面就主要围绕三个方向做。

  • 迁移,把之前提到的所有五花八门的队列环境,全部迁移到我们上面。这里面的迁移方案后面会跟大家介绍一下。

  • 功能迭代和成本性能上的优化。

  • 服务化,业务直接通过平台界面来申请资源,申请到之后直接使用。

1.4 演进中的架构

 

这张图是我们消息队列服务的一个比较新的现状。先纵向看,上面是生产的客户端,包括了7种语言。然后是我们的生产代理服务。在中间的是我们的消息存储层。目前主要的消息存储引擎是RocketMQ。然后还有一些在迁移过程中的Kafka。另一个是Chronos,它是我们延迟消息的一个存储引擎。

再下面就是消费代理。消费代理同样提供了多种语言的客户端,还支持多种协议的消息主动推送功能,包括HTTP 协议 RESTful方式。结合我们的groovy脚本功能,还能实现将消息直接转存到Redis、Hbase和HDFS上。此外,我们还在陆续接入更多的下游存储。

除了存储系统之外,我们也对接了实时计算平台,例如Flink,Spark,Storm,左边是我们的用户控制台和运维控制台。这个是我们服务化的重点。用户在需要使用队列的时候,就通过界面申请Topic,填写各种信息,包括身份信息,消息的峰值流量,消息大小,消息格式等等。然后消费方通过我们的界面,就可以申请消费。

运维控制台,主要负责我们集群的管理,自动化部署,流量调度,状态显示之类的功能。最后所有运维和用户操作会影响线上的配置,都会通过ZooKeeper进行同步。

 

为什么选择RocketMQ

 

我们围绕以下两个纬度进行了对比测试,结果显示RocketMQ的效果更好。

2.1 测试-topic数量的支持

测试环境:Kafka 0.8.2,RocketMQ 3.4.6,1.0 Gbps Network,16 threads

测试结果如下:

这张图是Kafka和RocketMQ在不同topic数量下的吞吐测试。横坐标是每秒消息数,纵坐标是测试case。同时覆盖了有无消费,和不同消息体的场景。一共8组测试数据,每组数据分别在Topic个数为16、32、64、128、256时获得的,每个topic包括8个Partition。下面四组数据是发送消息大小为128字节的情况,上面四种是发送2k消息大小的情况。on 表示消息发送的时候,同时进行消息消费,off表示仅进行消息发送。

先看最上面一组数据,用的是Kafka,开启消费,每条消息大小为2048字节可以看到,随着Topic数量增加,到256 Topic之后,吞吐极具下降。第二组是是RocketMQ。可以看到,Topic增大之后,影响非常小。第三组和第四组,是上面两组关闭了消费的情况。结论基本类似,整体吞吐量会高那么一点点。

下面的四组跟上面的区别是使用了128字节的小消息体。可以看到,Kafka吞吐受Topic数量的影响特别明显。对比来看,虽然topic比较小的时候,RocketMQ吞吐较小,但是基本非常稳定,对于我们这种共享集群来说比较友好。

2.2 测试-延迟

  • Kafka

测试环境:Kafka 0.8.2.2,topic=1/8/32,Ack=1/all,replica=3

测试结果:

(横坐标对应吞吐,纵坐标对应延迟时间)

上面的一组的3条线对应Ack=3,需要3个备份都确认后才完成数据的写入。下面的一组的3条线对应Ack=1,有1个备份收到数据后就可以完成写入。可以看到下面一组只需要主备份确认的写入,延迟明显较低。每组的三条线之间主要是Topic数量的区别,Topic数量增加,延迟也增大了。

  • RocketMQ

测试环境:

RocketMQ 3.4.6,brokerRole=ASYNC/SYNC_MASTER, 2 Slave,

flushDiskType=SYNC_FLUSH/ASYNC_FLUSH

测试结果:

上面两条是同步刷盘的情况,延迟相对比较高。下面的是异步刷盘。橙色的线是同步主从,蓝色的线是异步主从。然后可以看到在副本同步复制的情况下,即橙色的线,4w的TPS之内都不超过1ms。用这条橙色的线和上面Kafka的图中的上面三条线横向比较来看,Kafka超过1w TPS 就超过1ms了。Kafka的延迟明显更高。

 

如何构建自己的消息队列

 

3.1 问题与挑战

面临的挑战(顺时针看)

  • 客户端语言,需要支持PHP、Go、Java、C++;

  • 只有3个开发人员;

  • 决定用RocketMQ,但是没看过源码;

  • 上线时间紧,线上的Kafka还有问题;

  • 可用性要求高。

 

 

使用RocketMQ时的两个问题:

  • 客户端语言支持不全,以Java为主,而我们还需要支持PHP、Go、C++;

  • 功能特别多,如tag、property、消费过滤、RETRYtopic、死信队列、延迟消费之类的功能,但这对我们稳定性维护来说,挑战非常大。

针对以上两个问题的解决办法,如下图所示:

  • 使用ThriftRPC框架来解决跨语言的问题;

  • 简化调用接口。可以认为只有两个接口,send用来生产,pull用来消费。

主要策略就是坚持KISS原则(Keep it simple, stupid),保持简单,先解决最主要的问题,让消息能够流转起来。然后我们把其他主要逻辑都放在了proxy这一层来做,比如限流、权限认证、消息过滤、格式转化之类的。这样,我们就能尽可能地简化客户端的实现逻辑,不需要把很多功能用各种语言都写一遍。

3.2 迁移方案

架构确定后,接下来是我们的一个迁移过程。

迁移这个事情,在pub-sub的消息模型下,会比较复杂。因为下游的数据消费方可能很多,上游的数据没法做到一刀切流量,这就会导致整个迁移的周期特别长。然后我们为了尽可能地减少业务迁移的负担,加快迁移的效率,我们在Proxy层提供了双写和双读的功能。

  • 双写:ProcucerProxy同时写RocketMQ和Kafka;

  • 双读:ConsumerProxy同时从RocketMQ和Kafka消费数据。

有了这两个功能之后,我们就能提供以下两种迁移方案了。

3.2.1 双写

生产端双写,同时往Kafka和RocketMQ写同样的数据,保证两边在整个迁移过程中都有同样的全量数据。Kafka和RocketMQ有相同的数据,这样下游的业务也就可以开始迁移。如果消费端不关心丢数据,那么可以直接切换,切完直接更新消费进度。如果需要保证消费必达,可以先在ConsumerProxy设置消费进度,消费客户端保证没有数据堆积后再去迁移,这样会有一些重复消息,一般客户端会保证消费处理的幂等。

生产端的双写其实也有两种方案:

  • 客户端双写,如下图:

业务那边不停原来的kafka 客户端。只是加上我们的客户端,往RocketMQ里追加写。这种方案在整个迁移完成之后,业务还需要把老的写入停掉。相当于两次上线。

  • Producer Proxy双写,如下图:

业务方直接切换生产的客户端,只往我们的proxy上写数据。然后我们的proxy负责把数据复制,同时写到两个存储引擎中。这样在迁移完成之后,我们只需要在Proxy上关掉双写功能就可以了。对生产的业务方来说是无感知的,生产方全程只需要改造一次,上一下线就可以了。

所以表面看起来,应该还是第二种方案更加简单。但是,从整体可靠性的角度来看,一般还是认为第一种相对高一点。因为客户端到Kafka这一条链路,业务之前都已经跑稳定了。一般不会出问题。但是写我们Proxy就不一定了,在接入过程中,是有可能出现一些使用上的问题,导致数据写入失败,这就对业务方测试质量的要求会高一点。然后消费的迁移过程,其实风险是相对比较低的。出问题的时候,可以立即回滚。因为它在老的Kafka上消费进度,是一直保留的,而且在迁移过程中,可以认为是全量双消费。

以上就是数据双写的迁移方案,这种方案的特点就是两个存储引擎都有相同的全量数据。

3.2.2 双读

特点:保证不会重复消费。对于P2P 或者消费下游不太多,或者对重复消费数据比较敏感的场景比较适用。

这个方案的过程是这样的,消费先切换。全部迁移到到我们的Proxy上消费,Proxy从Kafka上获取。这个时候RocketMQ上没有流量。但是我们的消费Proxy保证了双消费,一旦RocketMQ有流量了,客户端同样也能收到。然后生产方改造客户端,直接切流到RocketMQ中,这样就完成了整个流量迁移过程。运行一段时间,比如Kafka里的数据都过期之后,就可以把消费Proxy上的双消费关了,下掉Kafka集群。

整个过程中,生产直接切流,所以数据不会重复存储。然后在消费迁移的过程中,我们消费Proxy上的group和业务原有的group可以用一个名字,这样就能实现迁移过程中自动rebalance,这样就能实现没有大量重复数据的效果。所以这个方案对重复消费比较敏感的业务会比较适合的。这个方案的整个过程中,消费方和生产方都只需要改造一遍客户端,上一次线就可以完成。

 

RocketMQ扩展改造

 

说完迁移方案,这里再简单介绍一下,我们在自己的RocketMQ分支上做的一些比较重要的事情。

 

首先一个非常重要的一点是主从的自动切换。

熟悉RocketMQ的同学应该知道,目前开源版本的RocketMQ broker 是没有主从自动切换的。如果你的Master挂了,那你就写不进去了。然后slave只能提供只读的功能。当然如果你的topic在多个主节点上都创建了,虽然不会完全写不进去,但是对单分片顺序消费的场景,还是会产生影响。所以呢,我们就自己加了一套主从自动切换的功能。

第二个是批量生产的功能。

RocketMQ4.0之后的版本是支持批量生产功能的。但是限制了,只能是同一个ConsumerQueue的。这个对于我们的Proxy服务来说,不太友好,因为我们的proxy是有多个不同的topic的,所以我们就扩展了一下,让它能够支持不同Topic、不同Consume Queue。原理上其实差不多,只是在传输的时候,把Topic和Consumer Queue的信息都编码进去。

第三个,元信息管理的改造。

目前RocketMQ单机能够支持的Topic数量,基本在几万这么一个量级,在增加上去之后,元信息的管理就会非常耗时,对整个吞吐的性能影响相对来说就会非常大。然后我们有个场景又需要支持单机百万左右的Topic数量,所以我们就改造了一下元信息管理部分,让RocketMQ单机能够支撑的Topic数量达到了百万。

后面一些就不太重要了,比如集成了我们公司内部的一些监控和部署工具,修了几个bug,也给提了PR。最新版都已经fix掉了。

 

RocketMQ使用经验

 

接下来,再简单介绍一下,我们在RocketMQ在使用和运维上的一些经验。主要是涉及在磁盘IO性能不够的时候,一些参数的调整。

5.1 读老数据的问题

我们都知道,RocketMQ的数据是要落盘的,一般只有最新写入的数据才会在PageCache中。比如下游消费数据,因为一些原因停了一天之后,又突然起来消费数据。这个时候就需要读磁盘上的数据。然后RocketMQ的消息体是全部存储在一个append only的 commitlog 中的。如果这个集群中混杂了很多不同topic的数据的话,要读的两条消息就很有可能间隔很远。最坏情况就是一次磁盘IO读一条消息。这就基本等价于随机读取了。如果磁盘的IOPS(Input/Output Operations Per Second)扛不住,还会影响数据的写入,这个问题就严重了。

值得庆幸的是,RocketMQ提供了自动从Slave读取老数据的功能。这个功能主要由slaveReadEnable这个参数控制。默认是关的(slaveReadEnable = false bydefault)。推荐把它打开,主从都要开。这个参数打开之后,在客户端消费数据时,会判断,当前读取消息的物理偏移量跟最新的位置的差值,是不是超过了内存容量的一个百分比(accessMessageInMemoryMaxRatio= 40 by default)。如果超过了,就会告诉客户端去备机上消费数据。如果采用异步主从,也就是brokerRole等于ASYNC_AMSTER的时候,你的备机IO打爆,其实影响不太大。但是如果你采用同步主从,那还是有影响。所以这个时候,最好挂两个备机。因为RocketMQ的主从同步复制,只要一个备机响应了确认写入就可以了,一台IO打爆,问题不大。

5.2 过期数据删除

RocketMQ默认数据保留72个小时(fileReservedTime=72)。然后它默认在凌晨4点开始删过期数据(deleteWhen="04")。你可以设置多个值用分号隔开。因为数据都是定时删除的,所以在磁盘充足的情况,数据的最长保留会比你设置的还多一天。又由于默认都是同一时间,删除一整天的数据,如果用了机械硬盘,一般磁盘容量会比较大,需要删除的数据会特别多,这个就会导致在删除数据的时候,磁盘IO被打满。这个时候又要影响写入了。

为了解决这个问题,可以尝试多个方法,一个是设置文件删除的间隔,有两个参数可以设置,

  • deleteCommitLogFilesInterval = 100(毫秒)。每删除10个commitLog文件的时间间隔;

  • deleteConsumeQueueFilesInterval=100(毫秒)。每删除一个ConsumeQueue文件的时间间隔。

另外一个就是增加删除频率,把00-23都写到deleteWhen,就可以实现每个小时都删数据。

5.3 索引

默认情况下,所有的broker都会建立索引(messageIndexEnable=true)。这个索引功能可以支持按照消息的uniqId,消息的key来查询消息体。索引文件实现的时候,本质上也就是基于磁盘的个一个hashmap。如果broker上消息数量比较多,查询的频率比较高,这也会造成一定的IO负载。所以我们的推荐方案是在Master上关掉了index功能,只在slave上打开。然后所有的index查询全部在slave上进行。当然这个需要简单修改一下MQAdminImpl里的实现。因为默认情况下,它会向Master发出请求。

这篇关于滴滴出行千亿级消息队列炼成记!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135833

相关文章

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

SpringBoot 自定义消息转换器使用详解

《SpringBoot自定义消息转换器使用详解》本文详细介绍了SpringBoot消息转换器的知识,并通过案例操作演示了如何进行自定义消息转换器的定制开发和使用,感兴趣的朋友一起看看吧... 目录一、前言二、SpringBoot 内容协商介绍2.1 什么是内容协商2.2 内容协商机制深入理解2.2.1 内容

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2431 poj 3253 优先队列的运用

poj 2431: 题意: 一条路起点为0, 终点为l。 卡车初始时在0点,并且有p升油,假设油箱无限大。 给n个加油站,每个加油站距离终点 l 距离为 x[i],可以加的油量为fuel[i]。 问最少加几次油可以到达终点,若不能到达,输出-1。 解析: 《挑战程序设计竞赛》: “在卡车开往终点的途中,只有在加油站才可以加油。但是,如果认为“在到达加油站i时,就获得了一

poj3750约瑟夫环,循环队列

Description 有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。 Input 第一行输入小孩的人数N(N<=64) 接下来每行输入一个小孩的名字(人名不超过15个字符) 最后一行输入W,S (W < N),用

POJ2010 贪心优先队列

c头牛,需要选n头(奇数);学校总共有f的资金, 每头牛分数score和学费cost,问合法招生方案中,中间分数(即排名第(n+1)/2)最高的是多少。 n头牛按照先score后cost从小到大排序; 枚举中间score的牛,  预处理左边与右边的最小花费和。 预处理直接优先队列贪心 public class Main {public static voi

Java并发编程之——BlockingQueue(队列)

一、什么是BlockingQueue BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种: 1. 当队列满了的时候进行入队列操作2. 当队列空了的时候进行出队列操作123 因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空

ActiveMQ—消息特性(延迟和定时消息投递)

ActiveMQ消息特性:延迟和定时消息投递(Delay and Schedule Message Delivery) 转自:http://blog.csdn.net/kimmking/article/details/8443872 有时候我们不希望消息马上被broker投递出去,而是想要消息60秒以后发给消费者,或者我们想让消息没隔一定时间投递一次,一共投递指定的次数。。。 类似