C++设计模式——Observer观察者模式

2024-09-04 09:52

本文主要是介绍C++设计模式——Observer观察者模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,观察者模式的定义

观察者模式是一种行为型设计模式,又被称为"发布-订阅"模式,它定义了对象之间的一对多的依赖关系,当一个对象的状态发生变化时,所有依赖于它的对象都会收到通知并自动更新。

观察者模式的关注点是对象之间的通信以及被观察对象的状态。

观察者模式在现实生活中的抽象实例:

报纸订阅:报纸的内容发生变化时,订阅了该报纸的读者们都会收到通知并阅读最新的内容。

股票投资:股票的价格发生波动时,投资者们会根据最新价格修改相应的投资决策。

天气预报:当天气发生变化时,订阅了该服务的用户们会收到通知。

网络论坛:当论坛中有新的帖子或回复出现时,论坛的用户们会收到通知并可以参与讨论。

二,观察者模式的结构

观察者模式主要包含以下组件:

1.被观察者(Subject):

被观察的对象,它的内部包含了观察者对象的集合,并提供了添加、通知和删除观察者对象的统一接口。

2.观察者(Observer):

接收Subject通知的对象,它订阅了Subject的状态,并提供了更新操作的统一接口。

3.具体的被观察者(ConcreteSubject):

包含Subject类接口的具体实现,维护了观察者的列表,自身状态发生变化时通知所有的观察者。

4.具体的观察者(ConcreteObserver):

包含Observer类接口的具体实现,提供了更新操作的具体实现细节,一旦收到Subject的通知便进行更新操作。

组件之间的工作步骤如下:

1.被观察者维护一个观察者的列表,并提供了管理和通知观察者的方法。

2.观察者与被观察者绑定(attach),并将自己添加到观察者列表中。

3.当被观察者的状态发生变化时,开始通知观察者,通知的方式一般是遍历观察者列表,遍历时会调用每个观察者的更新方法。

4.观察者完成具体的更新操作。

对应UML类图:

三,观察者模式代码样例

Demo1:subject只完成通知

#include <iostream>
#include <vector>class Observer {
public:virtual void update() = 0;
};class ConcreteObserver : public Observer {
public:ConcreteObserver(std::string name){observer_name = name;}void update() {std::cout << observer_name <<  " received notify." << std::endl;}
private:std::string observer_name = "";
};class Subject {
private://观察者集合std::vector<Observer*> observers;
public://添加观察者void attach(Observer* observer) {observers.push_back(observer);}//移除观察者void detach(Observer* observer) {for (auto it = observers.begin(); it != observers.end(); ++it) {if (*it == observer) {observers.erase(it);break;}}}//通知观察者void notify() {for (auto observer : observers) {observer->update();}}
};int main() {Subject subject;ConcreteObserver observer1("observer_1");ConcreteObserver observer2("observer_2");subject.attach(&observer1);subject.attach(&observer2);subject.notify();subject.detach(&observer2);subject.notify();return 0;
}

运行结果:

observer_1 received notify.
observer_2 received notify.
observer_1 received notify.

Demo2:subject完成通知并传参

#include <iostream>
#include <vector>class Observer {
public:virtual void update(int data) = 0;
};class ConcreteObserver : public Observer {
public:ConcreteObserver(std::string name){observer_name = name;}void update(int data) override {std::cout << observer_name << " received data: " << data << std::endl;}
private:std::string observer_name = "";
};class Subject {
public:virtual void attach(Observer* observer) = 0;virtual void detach(Observer* observer) = 0;virtual void notify(int data) = 0;
};class ConcreteSubject : public Subject {
private:std::vector<Observer*> observers;
public:void attach(Observer* observer) override {observers.push_back(observer);}void detach(Observer* observer) override {for (auto it = observers.begin(); it != observers.end(); ++it) {if (*it == observer) {observers.erase(it);break;}}}void notify(int data) override {for (auto observer : observers) {observer->update(data);}}
};int main() {ConcreteSubject subject;ConcreteObserver observer1("observer_1");ConcreteObserver observer2("observer_2");ConcreteObserver observer3("observer_3");subject.attach(&observer1);subject.attach(&observer2);subject.attach(&observer3);subject.notify(30);subject.detach(&observer1);subject.detach(&observer2);subject.notify(40);return 0;
}

运行结果:

observer_1 received data: 30
observer_2 received data: 30
observer_3 received data: 30
observer_3 received data: 40

四,观察者模式的应用场景

事件驱动编程:GUI界面开发时,监听用户在界面的各种操作,如按钮点击、窗口关闭等。
监控服务开发:当系统状态发生变化时(例如磁盘空间不足),工具会收到通知。
消息队列开发:基于"消费者-生产者"模式进行通信,当消息队列中有新的消息时,消费者会收到通知。

五,观察者模式的优缺点

观察者模式的优点:
符合"开闭原则"的要求。
支持广播的通信方式。
支持事件驱动编程。
可以动态添加观察者,代码扩展性好。
观察者模式的缺点:
每次状态变化都要遍历所有观察者,性能开销大。
每次状态变化都要通知所有的观察者,通信时间变长。
观察者数量过多会使代码的可读性变差。
当有多个客户端操作观察者的删除时,会带来数据安全问题。

六,代码实战

Demo1:基于观察者模式实现的模拟时钟定时
#include <iostream>
#include <vector>class Subject;class Observer
{
public:virtual ~Observer() = default;virtual void Update(Subject&) = 0;
};class Subject
{
public:virtual ~Subject() = default;void Attach(Observer& o) { observers.push_back(&o); }void Detach(Observer& o){observers.erase(std::remove(observers.begin(), observers.end(), &o));}void Notify(){for (auto* o : observers) {o->Update(*this);}}
private:std::vector<Observer*> observers;
};class ClockTimer : public Subject
{
public:void SetTime(int hour, int minute, int second){this->hour = hour;this->minute = minute;this->second = second;Notify();}int GetHour() const { return hour; }int GetMinute() const { return minute; }int GetSecond() const { return second; }
private:int hour;int minute;int second;
};class DigitalClock : public Observer
{
public:explicit DigitalClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }~DigitalClock() { subject.Detach(*this); }void Update(Subject& theChangedSubject) override{if (&theChangedSubject == &subject) {Draw();}}void Draw(){int hour = subject.GetHour();int minute = subject.GetMinute();int second = subject.GetSecond();std::cout << "Digital time is " << hour << ":"<< minute << ":"<< second << std::endl;}
private:ClockTimer& subject;
};class AnalogClock : public Observer
{
public:explicit AnalogClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }~AnalogClock() { subject.Detach(*this); }void Update(Subject& theChangedSubject) override{if (&theChangedSubject == &subject) {Draw();}}void Draw(){int hour = subject.GetHour();int minute = subject.GetMinute();int second = subject.GetSecond();std::cout << "Analog time is " << hour << ":"<< minute << ":"<< second << std::endl;}
private:ClockTimer& subject;
};int main()
{ClockTimer timer;DigitalClock digitalClock(timer);AnalogClock analogClock(timer);timer.SetTime(14, 41, 36);timer.SetTime(18, 00, 00);
}

运行结果:

Digital time is 14:41:36
Analog time is 14:41:36
Digital time is 18:0:0
Analog time is 18:0:0

Demo2:基于观察者模式实现的模拟天气预报

#include <iostream>
#include <vector>class Observer {
public:virtual void update(float temperature, float humidity, float pressure) = 0;
};class WeatherStation {
private:float temperature;float humidity;float pressure;std::vector<Observer*> observers;
public:void registerObserver(Observer* observer) {observers.push_back(observer);}void removeObserver(Observer* observer) {}void notifyObservers() {for (Observer* observer : observers) {observer->update(temperature, humidity, pressure);}}void setMeasurements(float temp, float hum, float press) {temperature = temp;humidity = hum;pressure = press;notifyObservers();}
};class Display : public Observer {
public:void update(float temperature, float humidity, float pressure) {std::cout<< " Display: Temperature = " << temperature<< " °C, Humidity = " << humidity<< " %, Pressure = " << pressure << " hPa"<< std::endl;}
};int main() {WeatherStation weatherStation;Display display1;Display display2;weatherStation.registerObserver(&display1);weatherStation.registerObserver(&display2);weatherStation.setMeasurements(25.5, 60, 1013.2);weatherStation.setMeasurements(24.8, 58, 1014.5);return 0;
}

运行结果:

Display: Temperature = 25.5 °C, Humidity = 60 %, Pressure = 1013.2 hPa
Display: Temperature = 25.5 °C, Humidity = 60 %, Pressure = 1013.2 hPa
Display: Temperature = 24.8 °C, Humidity = 58 %, Pressure = 1014.5 hPa
Display: Temperature = 24.8 °C, Humidity = 58 %, Pressure = 1014.5 hPa

七,参考阅读

https://sourcemaking.com/design_patterns/observer
https://www.modernescpp.com/index.php/the-observer-pattern/
https://www.geeksforgeeks.org/observer-pattern-c-design-patterns/
https://refactoringguru.cn/design-patterns/observer

这篇关于C++设计模式——Observer观察者模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135689

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给