C++设计模式——Observer观察者模式

2024-09-04 09:52

本文主要是介绍C++设计模式——Observer观察者模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,观察者模式的定义

观察者模式是一种行为型设计模式,又被称为"发布-订阅"模式,它定义了对象之间的一对多的依赖关系,当一个对象的状态发生变化时,所有依赖于它的对象都会收到通知并自动更新。

观察者模式的关注点是对象之间的通信以及被观察对象的状态。

观察者模式在现实生活中的抽象实例:

报纸订阅:报纸的内容发生变化时,订阅了该报纸的读者们都会收到通知并阅读最新的内容。

股票投资:股票的价格发生波动时,投资者们会根据最新价格修改相应的投资决策。

天气预报:当天气发生变化时,订阅了该服务的用户们会收到通知。

网络论坛:当论坛中有新的帖子或回复出现时,论坛的用户们会收到通知并可以参与讨论。

二,观察者模式的结构

观察者模式主要包含以下组件:

1.被观察者(Subject):

被观察的对象,它的内部包含了观察者对象的集合,并提供了添加、通知和删除观察者对象的统一接口。

2.观察者(Observer):

接收Subject通知的对象,它订阅了Subject的状态,并提供了更新操作的统一接口。

3.具体的被观察者(ConcreteSubject):

包含Subject类接口的具体实现,维护了观察者的列表,自身状态发生变化时通知所有的观察者。

4.具体的观察者(ConcreteObserver):

包含Observer类接口的具体实现,提供了更新操作的具体实现细节,一旦收到Subject的通知便进行更新操作。

组件之间的工作步骤如下:

1.被观察者维护一个观察者的列表,并提供了管理和通知观察者的方法。

2.观察者与被观察者绑定(attach),并将自己添加到观察者列表中。

3.当被观察者的状态发生变化时,开始通知观察者,通知的方式一般是遍历观察者列表,遍历时会调用每个观察者的更新方法。

4.观察者完成具体的更新操作。

对应UML类图:

三,观察者模式代码样例

Demo1:subject只完成通知

#include <iostream>
#include <vector>class Observer {
public:virtual void update() = 0;
};class ConcreteObserver : public Observer {
public:ConcreteObserver(std::string name){observer_name = name;}void update() {std::cout << observer_name <<  " received notify." << std::endl;}
private:std::string observer_name = "";
};class Subject {
private://观察者集合std::vector<Observer*> observers;
public://添加观察者void attach(Observer* observer) {observers.push_back(observer);}//移除观察者void detach(Observer* observer) {for (auto it = observers.begin(); it != observers.end(); ++it) {if (*it == observer) {observers.erase(it);break;}}}//通知观察者void notify() {for (auto observer : observers) {observer->update();}}
};int main() {Subject subject;ConcreteObserver observer1("observer_1");ConcreteObserver observer2("observer_2");subject.attach(&observer1);subject.attach(&observer2);subject.notify();subject.detach(&observer2);subject.notify();return 0;
}

运行结果:

observer_1 received notify.
observer_2 received notify.
observer_1 received notify.

Demo2:subject完成通知并传参

#include <iostream>
#include <vector>class Observer {
public:virtual void update(int data) = 0;
};class ConcreteObserver : public Observer {
public:ConcreteObserver(std::string name){observer_name = name;}void update(int data) override {std::cout << observer_name << " received data: " << data << std::endl;}
private:std::string observer_name = "";
};class Subject {
public:virtual void attach(Observer* observer) = 0;virtual void detach(Observer* observer) = 0;virtual void notify(int data) = 0;
};class ConcreteSubject : public Subject {
private:std::vector<Observer*> observers;
public:void attach(Observer* observer) override {observers.push_back(observer);}void detach(Observer* observer) override {for (auto it = observers.begin(); it != observers.end(); ++it) {if (*it == observer) {observers.erase(it);break;}}}void notify(int data) override {for (auto observer : observers) {observer->update(data);}}
};int main() {ConcreteSubject subject;ConcreteObserver observer1("observer_1");ConcreteObserver observer2("observer_2");ConcreteObserver observer3("observer_3");subject.attach(&observer1);subject.attach(&observer2);subject.attach(&observer3);subject.notify(30);subject.detach(&observer1);subject.detach(&observer2);subject.notify(40);return 0;
}

运行结果:

observer_1 received data: 30
observer_2 received data: 30
observer_3 received data: 30
observer_3 received data: 40

四,观察者模式的应用场景

事件驱动编程:GUI界面开发时,监听用户在界面的各种操作,如按钮点击、窗口关闭等。
监控服务开发:当系统状态发生变化时(例如磁盘空间不足),工具会收到通知。
消息队列开发:基于"消费者-生产者"模式进行通信,当消息队列中有新的消息时,消费者会收到通知。

五,观察者模式的优缺点

观察者模式的优点:
符合"开闭原则"的要求。
支持广播的通信方式。
支持事件驱动编程。
可以动态添加观察者,代码扩展性好。
观察者模式的缺点:
每次状态变化都要遍历所有观察者,性能开销大。
每次状态变化都要通知所有的观察者,通信时间变长。
观察者数量过多会使代码的可读性变差。
当有多个客户端操作观察者的删除时,会带来数据安全问题。

六,代码实战

Demo1:基于观察者模式实现的模拟时钟定时
#include <iostream>
#include <vector>class Subject;class Observer
{
public:virtual ~Observer() = default;virtual void Update(Subject&) = 0;
};class Subject
{
public:virtual ~Subject() = default;void Attach(Observer& o) { observers.push_back(&o); }void Detach(Observer& o){observers.erase(std::remove(observers.begin(), observers.end(), &o));}void Notify(){for (auto* o : observers) {o->Update(*this);}}
private:std::vector<Observer*> observers;
};class ClockTimer : public Subject
{
public:void SetTime(int hour, int minute, int second){this->hour = hour;this->minute = minute;this->second = second;Notify();}int GetHour() const { return hour; }int GetMinute() const { return minute; }int GetSecond() const { return second; }
private:int hour;int minute;int second;
};class DigitalClock : public Observer
{
public:explicit DigitalClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }~DigitalClock() { subject.Detach(*this); }void Update(Subject& theChangedSubject) override{if (&theChangedSubject == &subject) {Draw();}}void Draw(){int hour = subject.GetHour();int minute = subject.GetMinute();int second = subject.GetSecond();std::cout << "Digital time is " << hour << ":"<< minute << ":"<< second << std::endl;}
private:ClockTimer& subject;
};class AnalogClock : public Observer
{
public:explicit AnalogClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }~AnalogClock() { subject.Detach(*this); }void Update(Subject& theChangedSubject) override{if (&theChangedSubject == &subject) {Draw();}}void Draw(){int hour = subject.GetHour();int minute = subject.GetMinute();int second = subject.GetSecond();std::cout << "Analog time is " << hour << ":"<< minute << ":"<< second << std::endl;}
private:ClockTimer& subject;
};int main()
{ClockTimer timer;DigitalClock digitalClock(timer);AnalogClock analogClock(timer);timer.SetTime(14, 41, 36);timer.SetTime(18, 00, 00);
}

运行结果:

Digital time is 14:41:36
Analog time is 14:41:36
Digital time is 18:0:0
Analog time is 18:0:0

Demo2:基于观察者模式实现的模拟天气预报

#include <iostream>
#include <vector>class Observer {
public:virtual void update(float temperature, float humidity, float pressure) = 0;
};class WeatherStation {
private:float temperature;float humidity;float pressure;std::vector<Observer*> observers;
public:void registerObserver(Observer* observer) {observers.push_back(observer);}void removeObserver(Observer* observer) {}void notifyObservers() {for (Observer* observer : observers) {observer->update(temperature, humidity, pressure);}}void setMeasurements(float temp, float hum, float press) {temperature = temp;humidity = hum;pressure = press;notifyObservers();}
};class Display : public Observer {
public:void update(float temperature, float humidity, float pressure) {std::cout<< " Display: Temperature = " << temperature<< " °C, Humidity = " << humidity<< " %, Pressure = " << pressure << " hPa"<< std::endl;}
};int main() {WeatherStation weatherStation;Display display1;Display display2;weatherStation.registerObserver(&display1);weatherStation.registerObserver(&display2);weatherStation.setMeasurements(25.5, 60, 1013.2);weatherStation.setMeasurements(24.8, 58, 1014.5);return 0;
}

运行结果:

Display: Temperature = 25.5 °C, Humidity = 60 %, Pressure = 1013.2 hPa
Display: Temperature = 25.5 °C, Humidity = 60 %, Pressure = 1013.2 hPa
Display: Temperature = 24.8 °C, Humidity = 58 %, Pressure = 1014.5 hPa
Display: Temperature = 24.8 °C, Humidity = 58 %, Pressure = 1014.5 hPa

七,参考阅读

https://sourcemaking.com/design_patterns/observer
https://www.modernescpp.com/index.php/the-observer-pattern/
https://www.geeksforgeeks.org/observer-pattern-c-design-patterns/
https://refactoringguru.cn/design-patterns/observer

这篇关于C++设计模式——Observer观察者模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135689

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二