关于Manacher 算法中不明之处我的理解

2024-09-04 02:32

本文主要是介绍关于Manacher 算法中不明之处我的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先贴参考代码:

#manacher算法
#时间复杂度O(n)
class Solution:def longestPalindrome(self,s):if len(s) <= 1:return s# 每个字符之间插入 #ss = '$#' + '#'.join([x for x in s]) + '#`'p = [1] * len(ss)center = 0mx = 0max_str = ''for i in range(1, len(p)-1):if i < mx:j = 2 * center - i # i 关于 center 的对称点p[i] = min(p[j],mx-i)# 尝试继续向两边扩展,更新 p[i]while ss[i - p[i] ] == ss[i + p[i] ]: # 不必判断是否溢出,因为首位均有特殊字符,肯定会退出p[i] += 1# 更新中心if i + p[i] - 1 > mx:mx = i + p[i] - 1center = i# 更新最长串if 2 * p[i]-1 > len(max_str):max_str = ss[i - p[i]+1 : i + p[i]]return max_str.replace('#', '')

之前一直对manacher算法中以下代码不理解:

# 更新中心
if i + p[i] - 1 > mx:mx = i + p[i] - 1center = i

现解释如下:
我们设立两个辅助参数,center和mx,mx是回文串能延伸到的最右端的位置,center是延伸到最右端位置的回文串的中心。
在这里插入图片描述
之前看这个描述不太理解,实际上这个center,mx是过去所求的回文字符串的参数,这个之前一直不理解==
因为是过去所求回文串的参数,因此center和mx是已知的。
以下代码

if i < mx:j = 2 * center - i # i 关于 center 的对称点p[i] = min(p[j],mx-i)

实际上就是利用已知的信息对未知点进行部分更新。
这个部分更新的意思是,只从p[j]来说,因为j是i关于center的对称点,因此p[j]我们是知道的,因此我们可以利用p[j]更新p[i],虽然不能完全更新(也就是我们并不能根据过去那个回文串完全得到p[i]),起码也利用了p[j]的一些信息。
这里举个例子:
在这里插入图片描述
当我们的中心点位于编号5时,此时center=5,mx=center+p[5]=5+5=10
当for循环遍历到i=8的时候,此时我们可以根据之前公式得到p[8]=min(p[j],mx-i)=min(p[2*center-i],mx-i)=min(p[2],10-8)=2,我们根据这个更新以后,关于p[8]就不需要从半径为1(本身)开始遍历啦,因此利用了过去的信息进行更新。接下来再利用回文字符串本身性质进行更新即可。即以下代码:

  # 尝试继续向两边扩展,更新 p[i]while ss[i - p[i] ] == ss[i + p[i] ]: # 不必判断是否溢出,因为首位均有特殊字符,肯定会退出p[i] += 1

进行一步步迭代即可。

这篇关于关于Manacher 算法中不明之处我的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134747

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int