Python实现SM3算法

2024-09-03 22:20
文章标签 python 算法 实现 sm3

本文主要是介绍Python实现SM3算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 使用 Python 实现 SM3 算法的博客
        • 引言
        • SM3 算法的工作原理
        • SM3 算法的详细步骤
        • Python 面向对象实现 SM3 算法
        • 代码解析
        • 应用场景:数字签名验证
        • 总结

使用 Python 实现 SM3 算法的博客

引言

SM3 是中国国家密码管理局设计的密码杂凑算法,是我国密码学标准(GM/T 0004-2012)的一部分。SM3 算法类似于国际广泛使用的 SHA-256 算法,但具有一些独特的优化和改进。它主要用于数字签名、数据完整性校验和生成随机数等应用场景,尤其在中国的密码产品中具有重要地位。本文将详细介绍 SM3 算法的工作原理,并使用 Python 实现一个面向对象的 SM3 算法库,最后结合一个实际场景演示其应用。


SM3 算法的工作原理

SM3 是一种基于 Merkle-Damgård 架构的加密散列函数,它采用 256 位的输出哈希值。SM3 使用的消息块大小为 512 位(64 字节),并采用 256 位(8 字,32 位一个字)作为初始的哈希值长度。SM3 的哈希过程大致分为以下几个步骤:

  1. 消息填充(Padding):将输入消息填充到接近块大小的倍数(512 位)的长度。
  2. 初始化参数:初始化八个 32 位初始值(IV)。
  3. 消息扩展:将每个 512 位的消息分组扩展为 132 个 32 位字。
  4. 压缩函数:使用布尔函数、非线性函数和循环移位等操作对每一个消息分组进行压缩。
  5. 输出哈希值:最终将所有块的压缩结果拼接起来,生成一个 256 位的哈希值。
SM3 算法的详细步骤
  1. 消息填充

    • 填充规则和 SHA-256 类似。首先在消息末尾添加一个“1”比特,然后添加足够的“0”比特,使消息的总长度对 512 取模后等于 448(即接近 512 位的倍数)。最后附加一个 64 位的原始消息长度表示。
  2. 消息扩展

    • 消息扩展过程将 512 位的消息分块扩展为 132 个 32 位字。前 16 个字为消息分块本身,后 116 个字则是通过前面的字组合成的。
  3. 布尔函数

    • 使用三种布尔函数进行非线性操作,类似于 SHA-256 的设计。
    • ( FF(X, Y, Z) ) 和 ( GG(X, Y, Z) ) 是两种主要的非线性布尔函数,取决于当前处理的比特位置。
  4. 压缩函数

    • 将消息块和初始哈希值进行 64 轮的压缩操作。每一轮操作使用不同的布尔函数、常量和移位来更新状态变量。
  5. 输出哈希值

    • 将每一轮的结果累加起来得到最后的哈希值输出。

Python 面向对象实现 SM3 算法

下面是一个基于 Python 面向对象思想的 SM3 算法实现。此实现包括消息填充、消息扩展、压缩函数和哈希计算等核心部分。

import structclass SM3:def __init__(self, message):"""初始化 SM3 实例,准备计算哈希值。"""self.message = message# 初始哈希值 (IV)self.IV = [0x7380166F, 0x4914B2B9, 0x172442D7, 0xDA8A0600,0xA96F30BC, 0x163138AA, 0xE38DEE4D, 0xB0FB0E4E]# 常量self.T = [0x79CC4519 if i < 16 else 0x7A879D8A for i in range(64)]self._hash = self._calculate_sm3()def _padding(self):"""消息填充,使消息长度接近512位的倍数。"""message = bytearray(self.message, 'utf-8')message_len = len(message) * 8  # 原始消息的位长度message.append(0x80)  # 添加 '1' 比特# 填充 '0' 比特,直到消息长度模512等于448位message.extend([0x00] * ((56 - len(message) % 64) % 64))# 添加原始消息长度的64位表示message += struct.pack('>Q', message_len)return messagedef _left_rotate(self, n, m):"""循环左移操作。"""return ((n << m) & 0xFFFFFFFF) | ((n >> (32 - m)) & 0xFFFFFFFF)def _message_extension(self, block):"""消息扩展,将512位的消息扩展为132个32位字。"""W = list(struct.unpack('>16L', block))  # 解析16个字# 扩展W[16]到W[67]for i in range(16, 68):W.append(self._P1(W[i - 16] ^ W[i - 9] ^ self._left_rotate(W[i - 3], 15)) ^self._left_rotate(W[i - 13], 7) ^ W[i - 6])# 扩展W[68]到W[131]W_ = [W[i] ^ W[i + 4] for i in range(64)]return W, W_def _P1(self, X):"""非线性变换 P1。"""return X ^ self._left_rotate(X, 15) ^ self._left_rotate(X, 23)def _P0(self, X):"""非线性变换 P0。"""return X ^ self._left_rotate(X, 9) ^ self._left_rotate(X, 17)def _FF(self, X, Y, Z, j):"""布尔函数 FF。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (X & Z) | (Y & Z))def _GG(self, X, Y, Z, j):"""布尔函数 GG。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (~X & Z))def _compress(self, V, B):"""压缩函数,对消息块进行压缩。"""W, W_ = self._message_extension(B)A, B, C, D, E, F, G, H = V# 64轮压缩操作for j in range(64):SS1 = self._left_rotate((self._left_rotate(A, 12) + E + self._left_rotate(self.T[j], j % 32)) & 0xFFFFFFFF, 7)SS2 = SS1 ^ self._left_rotate(A, 12)TT1 = (self._FF(A, B, C, j) + D + SS2 + W_[j]) & 0xFFFFFFFFTT2 = (self._GG(E, F, G, j) + H + SS1 + W[j]) & 0xFFFFFFFFD = CC = self._left_rotate(B, 9)B = AA = TT1H = GG = self._left_rotate(F, 19)F = EE = self._P0(TT2)# 更新V值return [(V[i] ^ var) & 0xFFFFFFFF for i, var in enumerate([A, B, C, D, E, F, G, H])]def _calculate_sm3(self):"""计算 SM3 哈希值的主函数。"""padded_message = self._padding()blocks = [padded_message[i:i + 64] for i in range(0, len(padded_message), 64)]V = self.IV# 对每个消息块进行压缩for block in blocks:V = self._compress(V, block)return ''.join(f'{x:08x}' for x in V)def hexdigest(self):"""返回最终的 SM3 哈希值。"""return self._hash# 示例用法
if __name__ == "__main__":message = "Hello, SM3!"sm3 = SM3(message)print(f"原始消息: {message}")print(f"SM3 哈希值: {sm3.hexdigest()}")
代码解析
  1. 消息填充与初始化_padding 方法用于填充消息,并确保其符合 SM3 要求的 512 位块大小。

  2. **逻

辑操作**:_left_rotate 方法实现了循环左移操作,这是 SM3 哈希计算中的基础操作。

  1. 消息扩展_message_extension 方法将消息块扩展为 132 个 32 位字。

  2. 布尔函数与非线性变换_FF, _GG, _P0, _P1 方法分别定义了 SM3 的布尔函数和非线性变换。

  3. 压缩函数_compress 方法实现了 SM3 的核心逻辑,包括消息调度、64 轮的哈希计算、以及状态变量更新。

  4. 输出结果hexdigest 方法返回计算所得的 SM3 哈希值。


应用场景:数字签名验证

SM3 算法广泛用于数字签名中,确保数据的真实性和完整性。以下是一个基于 Python 的场景演示,展示如何使用 SM3 算法生成和验证数字签名:

class DigitalSignature:def __init__(self, private_key):self.private_key = private_key  # 私钥def sign(self, message):"""使用私钥对消息进行签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()signature = self._sign_with_private_key(hash_val)return signaturedef verify(self, message, signature):"""使用公钥验证消息签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()return self._verify_with_public_key(hash_val, signature)def _sign_with_private_key(self, hash_val):"""模拟私钥签名过程。"""# 此处为简化签名过程,假设私钥为简单的转换return hash_val[::-1]  # 反转哈希值作为签名def _verify_with_public_key(self, hash_val, signature):"""模拟公钥验证过程。"""# 验证签名是否与原哈希值匹配return hash_val == signature[::-1]# 示例使用
private_key = "user_private_key"
ds = DigitalSignature(private_key)message = "Hello, SM3 with Digital Signature!"
signature = ds.sign(message)
print(f"消息签名: {signature}")if ds.verify(message, signature):print("签名验证成功!消息未被篡改。")
else:print("签名验证失败!消息可能已被篡改。")
总结

本文详细介绍了 SM3 算法的原理和 Python 实现,并提供了一个基于 SM3 的数字签名验证示例。SM3 算法在中国的密码标准中起着重要作用,其高效性和安全性使其成为密码系统中数据完整性和认证的重要工具。掌握 SM3 算法的实现和应用,可以帮助更好地理解和使用现代密码学技术。

这篇关于Python实现SM3算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134209

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2