Python实现SM3算法

2024-09-03 22:20
文章标签 python 算法 实现 sm3

本文主要是介绍Python实现SM3算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 使用 Python 实现 SM3 算法的博客
        • 引言
        • SM3 算法的工作原理
        • SM3 算法的详细步骤
        • Python 面向对象实现 SM3 算法
        • 代码解析
        • 应用场景:数字签名验证
        • 总结

使用 Python 实现 SM3 算法的博客

引言

SM3 是中国国家密码管理局设计的密码杂凑算法,是我国密码学标准(GM/T 0004-2012)的一部分。SM3 算法类似于国际广泛使用的 SHA-256 算法,但具有一些独特的优化和改进。它主要用于数字签名、数据完整性校验和生成随机数等应用场景,尤其在中国的密码产品中具有重要地位。本文将详细介绍 SM3 算法的工作原理,并使用 Python 实现一个面向对象的 SM3 算法库,最后结合一个实际场景演示其应用。


SM3 算法的工作原理

SM3 是一种基于 Merkle-Damgård 架构的加密散列函数,它采用 256 位的输出哈希值。SM3 使用的消息块大小为 512 位(64 字节),并采用 256 位(8 字,32 位一个字)作为初始的哈希值长度。SM3 的哈希过程大致分为以下几个步骤:

  1. 消息填充(Padding):将输入消息填充到接近块大小的倍数(512 位)的长度。
  2. 初始化参数:初始化八个 32 位初始值(IV)。
  3. 消息扩展:将每个 512 位的消息分组扩展为 132 个 32 位字。
  4. 压缩函数:使用布尔函数、非线性函数和循环移位等操作对每一个消息分组进行压缩。
  5. 输出哈希值:最终将所有块的压缩结果拼接起来,生成一个 256 位的哈希值。
SM3 算法的详细步骤
  1. 消息填充

    • 填充规则和 SHA-256 类似。首先在消息末尾添加一个“1”比特,然后添加足够的“0”比特,使消息的总长度对 512 取模后等于 448(即接近 512 位的倍数)。最后附加一个 64 位的原始消息长度表示。
  2. 消息扩展

    • 消息扩展过程将 512 位的消息分块扩展为 132 个 32 位字。前 16 个字为消息分块本身,后 116 个字则是通过前面的字组合成的。
  3. 布尔函数

    • 使用三种布尔函数进行非线性操作,类似于 SHA-256 的设计。
    • ( FF(X, Y, Z) ) 和 ( GG(X, Y, Z) ) 是两种主要的非线性布尔函数,取决于当前处理的比特位置。
  4. 压缩函数

    • 将消息块和初始哈希值进行 64 轮的压缩操作。每一轮操作使用不同的布尔函数、常量和移位来更新状态变量。
  5. 输出哈希值

    • 将每一轮的结果累加起来得到最后的哈希值输出。

Python 面向对象实现 SM3 算法

下面是一个基于 Python 面向对象思想的 SM3 算法实现。此实现包括消息填充、消息扩展、压缩函数和哈希计算等核心部分。

import structclass SM3:def __init__(self, message):"""初始化 SM3 实例,准备计算哈希值。"""self.message = message# 初始哈希值 (IV)self.IV = [0x7380166F, 0x4914B2B9, 0x172442D7, 0xDA8A0600,0xA96F30BC, 0x163138AA, 0xE38DEE4D, 0xB0FB0E4E]# 常量self.T = [0x79CC4519 if i < 16 else 0x7A879D8A for i in range(64)]self._hash = self._calculate_sm3()def _padding(self):"""消息填充,使消息长度接近512位的倍数。"""message = bytearray(self.message, 'utf-8')message_len = len(message) * 8  # 原始消息的位长度message.append(0x80)  # 添加 '1' 比特# 填充 '0' 比特,直到消息长度模512等于448位message.extend([0x00] * ((56 - len(message) % 64) % 64))# 添加原始消息长度的64位表示message += struct.pack('>Q', message_len)return messagedef _left_rotate(self, n, m):"""循环左移操作。"""return ((n << m) & 0xFFFFFFFF) | ((n >> (32 - m)) & 0xFFFFFFFF)def _message_extension(self, block):"""消息扩展,将512位的消息扩展为132个32位字。"""W = list(struct.unpack('>16L', block))  # 解析16个字# 扩展W[16]到W[67]for i in range(16, 68):W.append(self._P1(W[i - 16] ^ W[i - 9] ^ self._left_rotate(W[i - 3], 15)) ^self._left_rotate(W[i - 13], 7) ^ W[i - 6])# 扩展W[68]到W[131]W_ = [W[i] ^ W[i + 4] for i in range(64)]return W, W_def _P1(self, X):"""非线性变换 P1。"""return X ^ self._left_rotate(X, 15) ^ self._left_rotate(X, 23)def _P0(self, X):"""非线性变换 P0。"""return X ^ self._left_rotate(X, 9) ^ self._left_rotate(X, 17)def _FF(self, X, Y, Z, j):"""布尔函数 FF。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (X & Z) | (Y & Z))def _GG(self, X, Y, Z, j):"""布尔函数 GG。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (~X & Z))def _compress(self, V, B):"""压缩函数,对消息块进行压缩。"""W, W_ = self._message_extension(B)A, B, C, D, E, F, G, H = V# 64轮压缩操作for j in range(64):SS1 = self._left_rotate((self._left_rotate(A, 12) + E + self._left_rotate(self.T[j], j % 32)) & 0xFFFFFFFF, 7)SS2 = SS1 ^ self._left_rotate(A, 12)TT1 = (self._FF(A, B, C, j) + D + SS2 + W_[j]) & 0xFFFFFFFFTT2 = (self._GG(E, F, G, j) + H + SS1 + W[j]) & 0xFFFFFFFFD = CC = self._left_rotate(B, 9)B = AA = TT1H = GG = self._left_rotate(F, 19)F = EE = self._P0(TT2)# 更新V值return [(V[i] ^ var) & 0xFFFFFFFF for i, var in enumerate([A, B, C, D, E, F, G, H])]def _calculate_sm3(self):"""计算 SM3 哈希值的主函数。"""padded_message = self._padding()blocks = [padded_message[i:i + 64] for i in range(0, len(padded_message), 64)]V = self.IV# 对每个消息块进行压缩for block in blocks:V = self._compress(V, block)return ''.join(f'{x:08x}' for x in V)def hexdigest(self):"""返回最终的 SM3 哈希值。"""return self._hash# 示例用法
if __name__ == "__main__":message = "Hello, SM3!"sm3 = SM3(message)print(f"原始消息: {message}")print(f"SM3 哈希值: {sm3.hexdigest()}")
代码解析
  1. 消息填充与初始化_padding 方法用于填充消息,并确保其符合 SM3 要求的 512 位块大小。

  2. **逻

辑操作**:_left_rotate 方法实现了循环左移操作,这是 SM3 哈希计算中的基础操作。

  1. 消息扩展_message_extension 方法将消息块扩展为 132 个 32 位字。

  2. 布尔函数与非线性变换_FF, _GG, _P0, _P1 方法分别定义了 SM3 的布尔函数和非线性变换。

  3. 压缩函数_compress 方法实现了 SM3 的核心逻辑,包括消息调度、64 轮的哈希计算、以及状态变量更新。

  4. 输出结果hexdigest 方法返回计算所得的 SM3 哈希值。


应用场景:数字签名验证

SM3 算法广泛用于数字签名中,确保数据的真实性和完整性。以下是一个基于 Python 的场景演示,展示如何使用 SM3 算法生成和验证数字签名:

class DigitalSignature:def __init__(self, private_key):self.private_key = private_key  # 私钥def sign(self, message):"""使用私钥对消息进行签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()signature = self._sign_with_private_key(hash_val)return signaturedef verify(self, message, signature):"""使用公钥验证消息签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()return self._verify_with_public_key(hash_val, signature)def _sign_with_private_key(self, hash_val):"""模拟私钥签名过程。"""# 此处为简化签名过程,假设私钥为简单的转换return hash_val[::-1]  # 反转哈希值作为签名def _verify_with_public_key(self, hash_val, signature):"""模拟公钥验证过程。"""# 验证签名是否与原哈希值匹配return hash_val == signature[::-1]# 示例使用
private_key = "user_private_key"
ds = DigitalSignature(private_key)message = "Hello, SM3 with Digital Signature!"
signature = ds.sign(message)
print(f"消息签名: {signature}")if ds.verify(message, signature):print("签名验证成功!消息未被篡改。")
else:print("签名验证失败!消息可能已被篡改。")
总结

本文详细介绍了 SM3 算法的原理和 Python 实现,并提供了一个基于 SM3 的数字签名验证示例。SM3 算法在中国的密码标准中起着重要作用,其高效性和安全性使其成为密码系统中数据完整性和认证的重要工具。掌握 SM3 算法的实现和应用,可以帮助更好地理解和使用现代密码学技术。

这篇关于Python实现SM3算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134209

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time