最近点对问题搞不懂?一篇文章就够了

2024-09-03 21:36

本文主要是介绍最近点对问题搞不懂?一篇文章就够了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题:你以为找最近点对只是暴力计算?不,分治算法才是真正的王牌!

你以为最近点对问题就是简单的“比比看谁最近”?但你知道吗,很多人用了暴力解法,认为两两比较再选出最小距离就行了!表面上看,这确实是最直接的思路,但你若是真这么做,恭喜你,成功入坑!这种 (O(n^2)) 的算法可不是你想要的,尤其是在竞赛场上,那简直是拖后腿!在今天的这篇文章里,我们要来打破这个误解,揭开真正高效解决最近点对问题的神秘算法——分治法(Divide and Conquer)

为什么暴力法行不通?看清背后的时间复杂度!

最近点对问题很简单,给定一组点,要找到两个最近的点对。这不就是在点与点之间比距离吗?但如果你这么想,那就要小心了!暴力法的时间复杂度是 (O(n^2)),因为要比较每一对点的距离。这种方法在点数少时看起来还不错,但一旦数据量大了,它的效率就让你哭都哭不出来!但分治算法的出现,正是为了解决这一难题。

1. 分治法登场:把“大象”劈开来,效率提升一百倍!

分治法的思路是什么?一言以蔽之:分而治之!就像你切西瓜一样,把问题一分为二,先解决每一部分的小问题,再合并结果。分治法能将时间复杂度降到 (O(n \log n)),这可不是简单的一点点优化,而是质的飞跃!到底是怎么做到的呢?我们一步步来看!

步骤拆解:简单五步,步步为营
  1. 排序:从简单入手
    先将所有点按照 x 坐标进行排序(如果有必要,再按照 y 坐标排序)。你可能觉得这跟“比距离”没什么关系,但别急,高手的操作就在这些细节中!

  2. 分治分割:分而治之的第一步,开刀!
    将点集一分为二,分别成为左右两部分。注意了,这里选择的是中位数点,将整个点集分成几乎相等的两部分,这样才能确保后续算法的平衡性!

  3. 递归计算:子问题的解决方案,效率拉满!
    对于左右两部分,分别递归地求解最近点对。别小看这一步,这就是分治法的精髓所在!递归地处理子问题,解决了就可以合并了。

  4. 合并结果:跨区域比较是关键!
    两部分的最小距离可能不在同一部分内,而是跨越中线的。因此,我们需要在左右两部分之间进行一次合并检查,找出左右最近点之间的最小距离。这一步就考验你的理解能力了!此处只需考虑到距离中线不超过 (\delta) 的点,因为更远的就不可能更近。

  5. 巧妙的带宽问题:别让繁琐计算拖慢了你!
    你可能以为跨区域的比较很麻烦,但实际上,我们只需要考虑每个点最多 6 个候选点就行了!为什么?想象一下,这些点在一个 2(\delta) x (\delta) 的矩形区域内,且相隔距离不超过 (\delta)。巧妙的数学证明告诉你,这样的比较效率完全不需要担心。

看了这五步,你可能觉得这听起来依旧很复杂。别急,我们把所有步骤都放进一段代码中,真相就清晰了!

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>typedef struct {double x, y;
} Point;// 按x坐标排序
int compareX(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->x - p2->x);
}// 按y坐标排序
int compareY(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->y - p2->y);
}// 计算两点之间的欧几里得距离
double distance(Point p1, Point p2) {return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}// 跨越分割线寻找最小距离
double stripClosest(Point strip[], int size, double d) {double min = d;  // 初始化最小距离为 dqsort(strip, size, sizeof(Point), compareY);  // 按 y 坐标排序for (int i = 0; i < size; ++i) {for (int j = i + 1; j < size && (strip[j].y - strip[i].y) < min; ++j) {double dist = distance(strip[i], strip[j]);if (dist < min) {min = dist;}}}return min;
}// 分治法计算最近点对
double closestUtil(Point points[], int n) {if (n <= 3) {double minDist = FLT_MAX;for (int i = 0; i < n; i++) {for (int j = i + 1; j < n; j++) {double dist = distance(points[i], points[j]);if (dist < minDist) {minDist = dist;}}}return minDist;}int mid = n / 2;Point midPoint = points[mid];double dl = closestUtil(points, mid);double dr = closestUtil(points + mid, n - mid);double d = fmin(dl, dr);Point strip[n];int j = 0;for (int i = 0; i < n; i++) {if (fabs(points[i].x - midPoint.x) < d) {strip[j] = points[i];j++;}}return fmin(d, stripClosest(strip, j, d));
}// 最近点对主函数
double closest(Point points[], int n) {qsort(points, n, sizeof(Point), compareX);return closestUtil(points, n);
}// 测试用例
int main() {Point points[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};int n = sizeof(points) / sizeof(points[0]);printf("最近点对的距离: %.6f\n", closest(points, n));return 0;
}

看到了吗?当你掌握了分治法的精髓后,原本看似复杂的步骤就变得有条不紊。这种算法的美感和效率上的提升,可以说是计算几何中的一大经典了。

为什么分治法如此强大?因为它的细节优化无懈可击!

很多人都认为算法的效率提升就是简单的减少计算步骤,但分治法更进一步:它通过数学上的严谨证明,让每一个步骤都没有多余的操作。尤其是在跨区域合并的步骤,很多人会觉得“这一步复杂”,但实际上通过巧妙的数学推导,你会发现这个问题其实变得非常简单!

总结:别再被暴力法给坑了,掌握分治法才是你登顶的钥匙!

最近点对问题不仅仅是计算几何的一个小练习,它揭示了算法优化的深层逻辑。想要在竞赛中拔得头筹?想要在面试中成为闪亮的那颗星?那么你就需要掌握这样的算法,理解它的精髓,用它的威力来打破常规的认知。

还等什么?今天的分享就到这里,赶快动手实践起来吧!我们下次见!

这篇关于最近点对问题搞不懂?一篇文章就够了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134112

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C