最近点对问题搞不懂?一篇文章就够了

2024-09-03 21:36

本文主要是介绍最近点对问题搞不懂?一篇文章就够了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题:你以为找最近点对只是暴力计算?不,分治算法才是真正的王牌!

你以为最近点对问题就是简单的“比比看谁最近”?但你知道吗,很多人用了暴力解法,认为两两比较再选出最小距离就行了!表面上看,这确实是最直接的思路,但你若是真这么做,恭喜你,成功入坑!这种 (O(n^2)) 的算法可不是你想要的,尤其是在竞赛场上,那简直是拖后腿!在今天的这篇文章里,我们要来打破这个误解,揭开真正高效解决最近点对问题的神秘算法——分治法(Divide and Conquer)

为什么暴力法行不通?看清背后的时间复杂度!

最近点对问题很简单,给定一组点,要找到两个最近的点对。这不就是在点与点之间比距离吗?但如果你这么想,那就要小心了!暴力法的时间复杂度是 (O(n^2)),因为要比较每一对点的距离。这种方法在点数少时看起来还不错,但一旦数据量大了,它的效率就让你哭都哭不出来!但分治算法的出现,正是为了解决这一难题。

1. 分治法登场:把“大象”劈开来,效率提升一百倍!

分治法的思路是什么?一言以蔽之:分而治之!就像你切西瓜一样,把问题一分为二,先解决每一部分的小问题,再合并结果。分治法能将时间复杂度降到 (O(n \log n)),这可不是简单的一点点优化,而是质的飞跃!到底是怎么做到的呢?我们一步步来看!

步骤拆解:简单五步,步步为营
  1. 排序:从简单入手
    先将所有点按照 x 坐标进行排序(如果有必要,再按照 y 坐标排序)。你可能觉得这跟“比距离”没什么关系,但别急,高手的操作就在这些细节中!

  2. 分治分割:分而治之的第一步,开刀!
    将点集一分为二,分别成为左右两部分。注意了,这里选择的是中位数点,将整个点集分成几乎相等的两部分,这样才能确保后续算法的平衡性!

  3. 递归计算:子问题的解决方案,效率拉满!
    对于左右两部分,分别递归地求解最近点对。别小看这一步,这就是分治法的精髓所在!递归地处理子问题,解决了就可以合并了。

  4. 合并结果:跨区域比较是关键!
    两部分的最小距离可能不在同一部分内,而是跨越中线的。因此,我们需要在左右两部分之间进行一次合并检查,找出左右最近点之间的最小距离。这一步就考验你的理解能力了!此处只需考虑到距离中线不超过 (\delta) 的点,因为更远的就不可能更近。

  5. 巧妙的带宽问题:别让繁琐计算拖慢了你!
    你可能以为跨区域的比较很麻烦,但实际上,我们只需要考虑每个点最多 6 个候选点就行了!为什么?想象一下,这些点在一个 2(\delta) x (\delta) 的矩形区域内,且相隔距离不超过 (\delta)。巧妙的数学证明告诉你,这样的比较效率完全不需要担心。

看了这五步,你可能觉得这听起来依旧很复杂。别急,我们把所有步骤都放进一段代码中,真相就清晰了!

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>typedef struct {double x, y;
} Point;// 按x坐标排序
int compareX(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->x - p2->x);
}// 按y坐标排序
int compareY(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->y - p2->y);
}// 计算两点之间的欧几里得距离
double distance(Point p1, Point p2) {return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}// 跨越分割线寻找最小距离
double stripClosest(Point strip[], int size, double d) {double min = d;  // 初始化最小距离为 dqsort(strip, size, sizeof(Point), compareY);  // 按 y 坐标排序for (int i = 0; i < size; ++i) {for (int j = i + 1; j < size && (strip[j].y - strip[i].y) < min; ++j) {double dist = distance(strip[i], strip[j]);if (dist < min) {min = dist;}}}return min;
}// 分治法计算最近点对
double closestUtil(Point points[], int n) {if (n <= 3) {double minDist = FLT_MAX;for (int i = 0; i < n; i++) {for (int j = i + 1; j < n; j++) {double dist = distance(points[i], points[j]);if (dist < minDist) {minDist = dist;}}}return minDist;}int mid = n / 2;Point midPoint = points[mid];double dl = closestUtil(points, mid);double dr = closestUtil(points + mid, n - mid);double d = fmin(dl, dr);Point strip[n];int j = 0;for (int i = 0; i < n; i++) {if (fabs(points[i].x - midPoint.x) < d) {strip[j] = points[i];j++;}}return fmin(d, stripClosest(strip, j, d));
}// 最近点对主函数
double closest(Point points[], int n) {qsort(points, n, sizeof(Point), compareX);return closestUtil(points, n);
}// 测试用例
int main() {Point points[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};int n = sizeof(points) / sizeof(points[0]);printf("最近点对的距离: %.6f\n", closest(points, n));return 0;
}

看到了吗?当你掌握了分治法的精髓后,原本看似复杂的步骤就变得有条不紊。这种算法的美感和效率上的提升,可以说是计算几何中的一大经典了。

为什么分治法如此强大?因为它的细节优化无懈可击!

很多人都认为算法的效率提升就是简单的减少计算步骤,但分治法更进一步:它通过数学上的严谨证明,让每一个步骤都没有多余的操作。尤其是在跨区域合并的步骤,很多人会觉得“这一步复杂”,但实际上通过巧妙的数学推导,你会发现这个问题其实变得非常简单!

总结:别再被暴力法给坑了,掌握分治法才是你登顶的钥匙!

最近点对问题不仅仅是计算几何的一个小练习,它揭示了算法优化的深层逻辑。想要在竞赛中拔得头筹?想要在面试中成为闪亮的那颗星?那么你就需要掌握这样的算法,理解它的精髓,用它的威力来打破常规的认知。

还等什么?今天的分享就到这里,赶快动手实践起来吧!我们下次见!

这篇关于最近点对问题搞不懂?一篇文章就够了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134112

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode