薛定谔的空气墙?一文带你了解其背后的技术原理

2024-09-03 16:36

本文主要是介绍薛定谔的空气墙?一文带你了解其背后的技术原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

封面图

悟空来了都得撞墙?

目前,被称作“村里第一个大学生”的国产3A游戏《黑神话:悟空》发售已经有一段时间了,游戏采用虚幻引擎4技术,仿佛将传统与现代的界限模糊,玩家游玩时沉浸感极强。然而,游戏也有不少令人诟病的部分,今天要说的就是网上不少人吐槽的黑神话中的“空气墙”问题

“空气墙”指的是游戏场景设计中给玩家的视觉认知与操作反馈不统一的现象,具体表现为“这里看起来明明可以通行,但走近之后却被一堵无形的墙给挡住了”。

空气墙的存在只是问题的表象,因为它往往可以用来规避更大的问题。但与一般游戏防止跌落的悬崖边空气墙不同,《黑神话:悟空》中存在很多无意义的空气墙。比如如下图模型明明有个空缺,但人物就像是一直在撞墙,一直过不去。

《黑神话:悟空》中有趣的空气墙,来源:B站up主 LaSpeeee_

如果上面的空气墙属于无伤大雅,小打小闹,那么下面这种空气墙就比较逆天了,非常折磨玩家的游玩心态。明明眼前有那么大的场景看起来可以探索,制作者还是这块台阶前铺设了一排空气墙,就连两侧的空区域也无法通行。

《黑神话:悟空》中逆天的空气墙,来源:B站up主 BlaiteHe

有玩家戏称之为“薛定谔的空气墙”。“在撞到空气墙之前,永远不知道这里是通往隐藏的小路还是空气墙。不试一下又怕错过,试了又回让人有些失望。”

越是愿意探索,空气墙的存在感就越高,也在挫败着玩家探索隐藏的欲望。

游戏中空气墙的设立不是无缘无故,制作组肯定有其含义。个人推测是《黑神话:悟空》为了各种性能优化,砍掉了原本规划的游戏路线,导致原地图可探索部分被裁剪,又临近发售,所以只能在游戏中设置了空气墙。

空气墙为何会阻止玩家前进?这就要从从游戏中的物理碰撞说起。

空气墙背后的碰撞检测

游戏引擎中物体模型和其碰撞是分开设置的,玩家前进中遇到的各种石头、树木、建筑物等障碍物之所以会阻碍玩家前进,是因为在这些模型上添加了物理碰撞。如果模型和碰撞设置的良好,当玩家刚要撞到物体模型的时候,就会因为碰撞的阻挡而停下,这种情况就给玩家一种物理的真实感。

人物与墙的碰撞测试,来源:98K物理-轻量碰撞系统

碰撞检测是游戏碰撞中的一个重要算法,它模拟了现实世界中物体之间的相互作用,也是几乎所有游戏都要用到的一个算法。比如2020年的游戏《Control》(控制)中的碰撞检测就有出色的应用。

《Control(控制)》中的物理碰撞效果,来源:B站up主 施特劳斯Woo

被称为“车祸模拟器”的物理沙盒类游戏《BeamNG.drive》在不少玩家心中拥有全球最顶尖的物理碰撞模拟和损坏效果。网上也有不少游戏与现实车祸的碰撞对比,可以看到,《BeamNG.drive》在其独特的物理引擎的加持下,具有非常拟真的碰撞效果

具备优秀物理引擎的沙盒游戏《BeamNG.drive》中的汽车碰撞效果(下)与真实碰撞(上)测试比较,来源:B站up主 依然Dy

具备优秀物理引擎的沙盒游戏《BeamNG》中的汽车碰撞效果(下)与真实碰撞(上)测试比较,来源:B站up主 依然Dy

那么,游戏中碰撞检测的背后是什么原理呢?

试想一下,一个有N个物体的场景,如果我们对这些物体每两个之间进行碰撞检测,需要的计算复杂度是O(N²) ,这对于计算机显然是不能接受的.

所以我们将碰撞检测分成两个阶段来实现,Broad-Phase(粗略检测)和Narrow-Phase(精细检测)

Broad-Phase

Broad-Phase是碰撞检测的第一个阶段,其主要目的是快速筛选出可能相互碰撞的物体对。在这个阶段,游戏引擎会使用各种空间划分技术,如AABB(Axis-Aligned Bounding Boxes,轴向包围盒)、OBB(Oriented Bounding Boxes,方向包围盒)、Sphere(球体)等,来简化物体的形状,并将这些简化后的形状存储在一个易于检索的数据结构中。

模型包围盒种类,来源:haroldserrano技术博客

常见的空间划分技术包括Uniform Grid(均匀网格)、Hierarchical Grids(层次网格)、Bounding Volume Hierarchical(BVH,包围盒层次结构)等。这些技术通过将游戏空间划分为多个子空间,并将物体分配到相应的子空间中,从而实现了对潜在碰撞体的快速筛选。

下图是以BVH为例,建立的碰撞检测流程。

碰撞检测流程,来源:haroldserrano技术博客

Narrow-Phase

在Broad-Phase初步的筛选过后,我们选出所有可能会碰撞的几何体对,Narrow-Phase的步骤是再对这些几何体进行精确的碰撞检测,比如采用凸包作为边界的体积进行碰撞检测

模型凸包边界检测,来源:haroldserrano技术博客

在物理引擎中会用到各种各样碰撞体形状,有些形状的碰撞计算非常直观且简单,比如两个球形之间,判断两个圆心的距离是否大于半径之和,就能直接计算出是否碰撞.

其余的碰撞计算就不太直观,需要一些特定的算法,但是目的都是判断两个多边形是否相交,比如在游戏引擎中比较常用的是Gilbert-Johnson-Keerthi (GJK)算法

与许多其他距离算法不同,GJK算法不要求几何数据以任何特定格式存储,而是仅依赖于一个支持函数来迭代生成更接近正确答案的单纯形,使用两个凸形状的配置空间障碍(CSO),也被称为闵可夫斯基差来判断两个形状是否有交集

闵可夫斯基差中的面-顶点(Face-Vertex)碰撞类型和边-边(Edge-Edge)碰撞类型,来源:Wiki百科

地图引擎中的碰撞检测

在地图引擎中,碰撞检测技术同样扮演了重要的角色,也是渲染性能的重要组成部分。比如在二维瓦片、三维模型渲染之前,需要对其是否可见性进行判断,判断的依据就是根据模型的外包围盒进行碰撞检测,以此只渲染屏幕看得到的模型。这样做,大大提升了渲染性能。

Mapmost中碰撞检测应用之一——模型视锥体裁剪,来源:Mapmost引擎

碰撞检测在地图中的另一个重要运用是给标注添加避让效果。通过给定每个注记外包围盒,渲染时判断这些包围盒之间的距离是否小于某个阈值,小于了就只显示唯一一个,避免多个注记的重复叠加,影响用户的使用体验。

Mapmost中碰撞检测应用之一——注记避让效果,来源:Mapmost引擎

参考文献

https://www.bilibili.com/video/BV1PMWHeHEyb/?spm_id_from=333.880.my_history.page.click&vd_source=94abb2a8fc86022a0736e7f6850b4b2f

https://www.bilibili.com/video/BV1eSWpe3EBv/?spm_id_from=333.337.search-card.all.click&vd_source=94abb2a8fc86022a0736e7f6850b4b2f

https://www.bilibili.com/video/BV1Rf4y1J7WF/?spm_id_from=333.788.recommend_more_video.0&vd_source=94abb2a8fc86022a0736e7f6850b4b2f

https://mp.weixin.qq.com/s/7OG224y-uoA8ptLWzYzXrQ

https://www.bilibili.com/video/BV1T54y1H7Dm/?spm_id_from=333.337.search-card.all.click&vd_source=94abb2a8fc86022a0736e7f6850b4b2f

https://zhuanlan.zhihu.com/p/113415779

https://en.wikipedia.org/wiki/Gilbert%E2%80%93Johnson%E2%80%93Keerthi_distance_algorithm

这篇关于薛定谔的空气墙?一文带你了解其背后的技术原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133457

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w