二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)

本文主要是介绍二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。

而Flume的拦截器并不能很好的转换数据,因为只能采用Java方式,从Kafka的主题A中采集数据,并解析字段,然后写入到放在Kafka主题B中

二 、原始数据格式

JSON格式比较复杂,对象中包含数组,数组中包含对象

{
    "deviceNo": "39",
    "sourceDeviceType": null,
    "sn": null,
    "model": null,
    "createTime": "2024-09-03 14:40:00",
    "data": {
        "cycle": 300,
        "sectionList": [{
            "sectionNo": 1,
            "coilList": [{
                "laneNo": 1,
                "laneType": null,
                "coilNo": 1,
                "volumeSum": 3,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 3,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 24.15,
                "timeOccupancy": 0.98,
                "averageHeadway": 162.36,
                "averageGap": 161.63,
                "speed85": 38.0
            },
            {
                "laneNo": 8,
                "laneType": null,
                "coilNo": 8,
                "volumeSum": 1,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 1,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 49.43,
                "timeOccupancy": 0.3,
                "averageHeadway": 115.3,
                "averageGap": 115.1,
                "speed85": 49.43
            }]
        }]
    }
}

三、Java代码

package com.kgc;import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;public class KafkaKafkaStatistics {// 添加 Kafka Producer 配置private static Properties producerProps() {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.ACKS_CONFIG, "-1");props.put(ProducerConfig.RETRIES_CONFIG, "3");props.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384");props.put(ProducerConfig.LINGER_MS_CONFIG, "1");props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, "33554432");return props;}public static void main(String[] args) {Properties prop = new Properties();prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");prop.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 每一个消费,都要定义不同的Group_IDprop.put(ConsumerConfig.GROUP_ID_CONFIG, "statistics_group");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(prop);consumer.subscribe(Collections.singleton("topic_internal_data_statistics"));ObjectMapper mapper = new ObjectMapper();// 初始化 Kafka ProducerKafkaProducer<String, String> producer = new KafkaProducer<>(producerProps());while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {try {JsonNode rootNode = mapper.readTree(record.value());System.out.println("原始数据"+rootNode);String device_no = rootNode.get("deviceNo").asText();String source_device_type = rootNode.get("sourceDeviceType").asText();String sn = rootNode.get("sn").asText();String model = rootNode.get("model").asText();String create_time = rootNode.get("createTime").asText();JsonNode dataNode = rootNode.get("data");String  cycle = dataNode.get("cycle").asText();for (JsonNode sectionStatus : dataNode.get("sectionList")) {String section_no = sectionStatus.get("sectionNo").asText();JsonNode coilList = sectionStatus.get("coilList");for (JsonNode coilItem : coilList) {String lane_no = coilItem.get("laneNo").asText();String lane_type = coilItem.get("laneType").asText();String coil_no = coilItem.get("coilNo").asText();String volume_sum = coilItem.get("volumeSum").asText();String volume_person = coilItem.get("volumePerson").asText();String volume_car_non = coilItem.get("volumeCarNon").asText();String volume_car_small = coilItem.get("volumeCarSmall").asText();String volume_car_middle = coilItem.get("volumeCarMiddle").asText();String volume_car_big = coilItem.get("volumeCarBig").asText();String speed_avg = coilItem.get("speedAvg").asText();String speed_85 = coilItem.get("speed85").asText();String time_occupancy = coilItem.get("timeOccupancy").asText();String average_headway = coilItem.get("averageHeadway").asText();String average_gap = coilItem.get("averageGap").asText();String outputLine = String.format("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s",device_no, source_device_type, sn, model, create_time, cycle, lane_no, lane_type, section_no, coil_no, volume_sum, volume_person,volume_car_non, volume_car_small, volume_car_middle, volume_car_big, speed_avg, speed_85, time_occupancy, average_headway, average_gap);// 发送数据到 KafkaProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_db_data_statistics", record.key(), outputLine);producer.send(producerRecord, (RecordMetadata metadata, Exception e) -> {if (e != null) {e.printStackTrace();} else {System.out.println("The offset of the record we just sent is: " + metadata.offset());}});}}} catch (Exception e) {e.printStackTrace();}}consumer.commitAsync();}}}

剩下的几步参考二百五十九、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(一般JSON)这篇博客

四、开启Kafka主题消费者

五、运行测试

六、ODS层新表结构

七、Flume采集配置文件

八、运行Flume任务,检查HDFS文件、以及ODS表数据

这篇关于二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133388

相关文章

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具