9行代码开发一个基于ollama的私有化RAG

2024-09-03 13:20

本文主要是介绍9行代码开发一个基于ollama的私有化RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

OpenAI(LLM + Embedding)是使用LiteLLM + ollama模拟,具体做法如下,

Llamaindex OpenAI LLM 模型默认使用的是gpt-3.5-turboembedding 模型默认使用的是text-embedding-ada-002, 所以这里使用litellm 配合config来模拟,

一句话介绍LiteLLM

使用OpenAI格式调用所有LLM API。使用Bedrock,Azure,OpenAI,Cohere,Anthropic,Ollama,Sagemaker,HuggingFace,Replicate(100+ LLM)。

安装LiteLLM

pip install 'litellm[proxy]'

模型映射

创建litellm.yaml
在这里插入图片描述

运行litellm

litellm --config litellm.yaml

💡,这样模拟的OpenAI不支持function call,所以index.as_chat_engine(chat_mode="condense_question") 不能使用默认的chat_mode。

如果想部署并使用开源模型,不需要这么麻烦,我们可以根据需要选择合适的方案,这里我介绍下ollama的实现。

图片

llama.cpp

Ollama

Ollama 提供了多种LLM模型和embedding模型(如all-minilm,mxbai-embed-large,nomic-embed-text,snowflake-arctic-embed 等), 如果没有你想用的,也可以自己导入gguf格式模型。

关于ollama,这里就不展开了,有兴趣的可以看看我的另外一篇文章:[ollama 使用技巧集锦](https://mp.weixin.qq.com/s?__biz=MzU1NTg2ODQ5Nw==&mid=2247489345&idx=1&sn=342eea6917c3 ba45e3da9146dcb4ec45&chksm=fbcc9f7fccbb16691c5a43ca5b454af2a59d4387d206024ae61f046a12431469bfe16e2d7c05&token=964566570&lang=zh_CN&scene=21#wechat_redirect)

安装包

pip install llama-index-embeddings-ollama
pip install llama-index-llms-ollama

代码

from llama_index.core import VectorStoreIndex, Document, SimpleDirectoryReader,Settings
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
# 指定LLM
Settings.llm = Ollama(model="wizardlm2:7b-q5_K_M", request_timeout=60.0)
# 指定 embedding model
Settings.embed_model = OllamaEmbedding(model_name="snowflake-arctic-embed:latest")
## 剩下代码一样
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
print(chat_engine.chat("DuckDB的VSS扩展主要功能, reply in Chinese"))

结论

至此,一个基于ollama的rag就有雏形了。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

这篇关于9行代码开发一个基于ollama的私有化RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133070

相关文章

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.