9行代码开发一个基于ollama的私有化RAG

2024-09-03 13:20

本文主要是介绍9行代码开发一个基于ollama的私有化RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

OpenAI(LLM + Embedding)是使用LiteLLM + ollama模拟,具体做法如下,

Llamaindex OpenAI LLM 模型默认使用的是gpt-3.5-turboembedding 模型默认使用的是text-embedding-ada-002, 所以这里使用litellm 配合config来模拟,

一句话介绍LiteLLM

使用OpenAI格式调用所有LLM API。使用Bedrock,Azure,OpenAI,Cohere,Anthropic,Ollama,Sagemaker,HuggingFace,Replicate(100+ LLM)。

安装LiteLLM

pip install 'litellm[proxy]'

模型映射

创建litellm.yaml
在这里插入图片描述

运行litellm

litellm --config litellm.yaml

💡,这样模拟的OpenAI不支持function call,所以index.as_chat_engine(chat_mode="condense_question") 不能使用默认的chat_mode。

如果想部署并使用开源模型,不需要这么麻烦,我们可以根据需要选择合适的方案,这里我介绍下ollama的实现。

图片

llama.cpp

Ollama

Ollama 提供了多种LLM模型和embedding模型(如all-minilm,mxbai-embed-large,nomic-embed-text,snowflake-arctic-embed 等), 如果没有你想用的,也可以自己导入gguf格式模型。

关于ollama,这里就不展开了,有兴趣的可以看看我的另外一篇文章:[ollama 使用技巧集锦](https://mp.weixin.qq.com/s?__biz=MzU1NTg2ODQ5Nw==&mid=2247489345&idx=1&sn=342eea6917c3 ba45e3da9146dcb4ec45&chksm=fbcc9f7fccbb16691c5a43ca5b454af2a59d4387d206024ae61f046a12431469bfe16e2d7c05&token=964566570&lang=zh_CN&scene=21#wechat_redirect)

安装包

pip install llama-index-embeddings-ollama
pip install llama-index-llms-ollama

代码

from llama_index.core import VectorStoreIndex, Document, SimpleDirectoryReader,Settings
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
# 指定LLM
Settings.llm = Ollama(model="wizardlm2:7b-q5_K_M", request_timeout=60.0)
# 指定 embedding model
Settings.embed_model = OllamaEmbedding(model_name="snowflake-arctic-embed:latest")
## 剩下代码一样
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
print(chat_engine.chat("DuckDB的VSS扩展主要功能, reply in Chinese"))

结论

至此,一个基于ollama的rag就有雏形了。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

这篇关于9行代码开发一个基于ollama的私有化RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133070

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

Vue3项目开发——新闻发布管理系统(六)

文章目录 八、首页设计开发1、页面设计2、登录访问拦截实现3、用户基本信息显示①封装用户基本信息获取接口②用户基本信息存储③用户基本信息调用④用户基本信息动态渲染 4、退出功能实现①注册点击事件②添加退出功能③数据清理 5、代码下载 八、首页设计开发 登录成功后,系统就进入了首页。接下来,也就进行首页的开发了。 1、页面设计 系统页面主要分为三部分,左侧为系统的菜单栏,右侧