9行代码开发一个基于ollama的私有化RAG

2024-09-03 13:20

本文主要是介绍9行代码开发一个基于ollama的私有化RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

OpenAI(LLM + Embedding)是使用LiteLLM + ollama模拟,具体做法如下,

Llamaindex OpenAI LLM 模型默认使用的是gpt-3.5-turboembedding 模型默认使用的是text-embedding-ada-002, 所以这里使用litellm 配合config来模拟,

一句话介绍LiteLLM

使用OpenAI格式调用所有LLM API。使用Bedrock,Azure,OpenAI,Cohere,Anthropic,Ollama,Sagemaker,HuggingFace,Replicate(100+ LLM)。

安装LiteLLM

pip install 'litellm[proxy]'

模型映射

创建litellm.yaml
在这里插入图片描述

运行litellm

litellm --config litellm.yaml

💡,这样模拟的OpenAI不支持function call,所以index.as_chat_engine(chat_mode="condense_question") 不能使用默认的chat_mode。

如果想部署并使用开源模型,不需要这么麻烦,我们可以根据需要选择合适的方案,这里我介绍下ollama的实现。

图片

llama.cpp

Ollama

Ollama 提供了多种LLM模型和embedding模型(如all-minilm,mxbai-embed-large,nomic-embed-text,snowflake-arctic-embed 等), 如果没有你想用的,也可以自己导入gguf格式模型。

关于ollama,这里就不展开了,有兴趣的可以看看我的另外一篇文章:[ollama 使用技巧集锦](https://mp.weixin.qq.com/s?__biz=MzU1NTg2ODQ5Nw==&mid=2247489345&idx=1&sn=342eea6917c3 ba45e3da9146dcb4ec45&chksm=fbcc9f7fccbb16691c5a43ca5b454af2a59d4387d206024ae61f046a12431469bfe16e2d7c05&token=964566570&lang=zh_CN&scene=21#wechat_redirect)

安装包

pip install llama-index-embeddings-ollama
pip install llama-index-llms-ollama

代码

from llama_index.core import VectorStoreIndex, Document, SimpleDirectoryReader,Settings
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
# 指定LLM
Settings.llm = Ollama(model="wizardlm2:7b-q5_K_M", request_timeout=60.0)
# 指定 embedding model
Settings.embed_model = OllamaEmbedding(model_name="snowflake-arctic-embed:latest")
## 剩下代码一样
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
print(chat_engine.chat("DuckDB的VSS扩展主要功能, reply in Chinese"))

结论

至此,一个基于ollama的rag就有雏形了。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

这篇关于9行代码开发一个基于ollama的私有化RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133070

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee