excel比较两列差异性和一致性,统计之后降序排列

2024-09-03 11:52

本文主要是介绍excel比较两列差异性和一致性,统计之后降序排列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import pandas as pd
import numpy as np# 读取Excel文件
file_path = 'last-all.xlsx'
df = pd.read_excel(file_path)# 指定要比较的列名
column1 = '标注'
column2 = '不含72b'# 将两列内容尝试转换为数字,无法转换的标记为 NaN
df[column1 + '_num'] = pd.to_numeric(df[column1], errors='coerce')
df[column2 + '_num'] = pd.to_numeric(df[column2], errors='coerce')# 比较数字列的内容是否一致,非数字内容标记为 NaN
differences = df[column1 + '_num'] != df[column2 + '_num']# 找出不一致的部分及其行号
diff_df = df[differences].copy()
diff_df['差异'] = df[column1].astype(str) + ' → ' + df[column2].astype(str)# 统计每类不一致的部分及其比例
diff_counts = diff_df['差异'].value_counts()
diff_percentages = (diff_counts / len(diff_df)) * 100
# 打印一共有多少条不一样的结果
total_differences = len(diff_df)
total_rows = len(df)
percentage_differences = (total_differences / total_rows) * 100
#打印一致性
print(f"一致性为 {(1 - percentage_differences / 100):.2f}")
print(f"\n一共有 {total_differences} 条不一样的结果,占总数的比例为 {percentage_differences:.2f}%。")# 打印统计结果
print("每类不一致的部分占比 (从高到低排序):")
for diff, percentage in zip(diff_counts.index, diff_percentages):print(f"{diff}: {percentage:.2f}%")# 打印不一致部分及行号
# print("\n不一致部分的详细信息 (行号: 标注列 → 不含列):")
# for index, row in diff_df.iterrows():
#     print(f"行号 {index}: {row['差异']}")# 输出nan出现的行号
nan_rows = diff_df[(diff_df[column1 + '_num'].isna()) | (diff_df[column2 + '_num'].isna())]
if not nan_rows.empty:print("\n含有nan的行号:")for index in nan_rows.index:print(f"行号 {index}")
else:print("\n没有含有nan的行。")

一致性

在这个代码基础上追加功能:比较column2那一列和column1相比一致性最高的类别,并打印类别和一致比例

import pandas as pd
import numpy as np# 读取Excel文件
file_path = 'last-all.xlsx'
df = pd.read_excel(file_path)# 指定要比较的列名
column1 = '标注'
column2 = '不含72b'# 将两列内容尝试转换为数字,无法转换的标记为 NaN
df[column1 + '_num'] = pd.to_numeric(df[column1], errors='coerce')
df[column2 + '_num'] = pd.to_numeric(df[column2], errors='coerce')# 比较数字列的内容是否一致,非数字内容标记为 NaN
differences = df[column1 + '_num'] != df[column2 + '_num']# 找出不一致的部分及其行号
diff_df = df[differences].copy()
diff_df['差异'] = df[column1].astype(str) + ' → ' + df[column2].astype(str)# 统计每类不一致的部分及其比例
diff_counts = diff_df['差异'].value_counts()
diff_percentages = (diff_counts / len(diff_df)) * 100# 计算总体一致性
total_differences = len(diff_df)
total_rows = len(df)
percentage_differences = (total_differences / total_rows) * 100
consistency = (1 - percentage_differences / 100)
print(f"一致性为 {consistency:.2f}")
print(f"\n一共有 {total_differences} 条不一样的结果,占总数的比例为 {percentage_differences:.2f}%。")# 打印统计结果
print("每类不一致的部分占比 (从高到低排序):")
for diff, percentage in zip(diff_counts.index, diff_percentages):print(f"{diff}: {percentage:.2f}%")# 找出column2中与column1相比一致性最高的类别
df['一致'] = df[column1 + '_num'] == df[column2 + '_num']
consistency_by_category = df[df['一致']].groupby(column2).size()# 计算每个类别的总体比例(占column2中的比例)
total_by_category = df.groupby(column2).size()
highest_consistency_category = (consistency_by_category / total_by_category).idxmax()
highest_consistency_percentage = (consistency_by_category / total_by_category).max() * 100# 打印一致性最高的类别及其比例
print(f"\n在 {column2} 列中,与 {column1} 列相比一致性最高的类别是 '{highest_consistency_category}',一致比例为 {highest_consistency_percentage:.2f}%。")

这篇关于excel比较两列差异性和一致性,统计之后降序排列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132898

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

关键字synchronized、volatile的比较

关键字volatile是线程同步的轻量级实现,所以volatile性能肯定比synchronized要好,并且volatile只能修饰于变量,而synchronized可以修饰方法,以及代码块。随着JDK新版本的发布,synchronized关键字的执行效率上得到很大提升,在开发中使用synchronized关键字的比率还是比较大的。多线程访问volatile不会发生阻塞,而synchronize

C#关闭指定时间段的Excel进程的方法

private DateTime beforeTime;            //Excel启动之前时间          private DateTime afterTime;               //Excel启动之后时间          //举例          beforeTime = DateTime.Now;          Excel.Applicat

Python脚本:TXT文档行数统计

count = 0 #计数变量file_dirs = input('请输入您要统计的文件根路径:')filename = open(file_dirs,'r') #以只读方式打开文件file_contents = filename.read() #读取文档内容到file_contentsfor file_content in file_contents: