excel比较两列差异性和一致性,统计之后降序排列

2024-09-03 11:52

本文主要是介绍excel比较两列差异性和一致性,统计之后降序排列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import pandas as pd
import numpy as np# 读取Excel文件
file_path = 'last-all.xlsx'
df = pd.read_excel(file_path)# 指定要比较的列名
column1 = '标注'
column2 = '不含72b'# 将两列内容尝试转换为数字,无法转换的标记为 NaN
df[column1 + '_num'] = pd.to_numeric(df[column1], errors='coerce')
df[column2 + '_num'] = pd.to_numeric(df[column2], errors='coerce')# 比较数字列的内容是否一致,非数字内容标记为 NaN
differences = df[column1 + '_num'] != df[column2 + '_num']# 找出不一致的部分及其行号
diff_df = df[differences].copy()
diff_df['差异'] = df[column1].astype(str) + ' → ' + df[column2].astype(str)# 统计每类不一致的部分及其比例
diff_counts = diff_df['差异'].value_counts()
diff_percentages = (diff_counts / len(diff_df)) * 100
# 打印一共有多少条不一样的结果
total_differences = len(diff_df)
total_rows = len(df)
percentage_differences = (total_differences / total_rows) * 100
#打印一致性
print(f"一致性为 {(1 - percentage_differences / 100):.2f}")
print(f"\n一共有 {total_differences} 条不一样的结果,占总数的比例为 {percentage_differences:.2f}%。")# 打印统计结果
print("每类不一致的部分占比 (从高到低排序):")
for diff, percentage in zip(diff_counts.index, diff_percentages):print(f"{diff}: {percentage:.2f}%")# 打印不一致部分及行号
# print("\n不一致部分的详细信息 (行号: 标注列 → 不含列):")
# for index, row in diff_df.iterrows():
#     print(f"行号 {index}: {row['差异']}")# 输出nan出现的行号
nan_rows = diff_df[(diff_df[column1 + '_num'].isna()) | (diff_df[column2 + '_num'].isna())]
if not nan_rows.empty:print("\n含有nan的行号:")for index in nan_rows.index:print(f"行号 {index}")
else:print("\n没有含有nan的行。")

一致性

在这个代码基础上追加功能:比较column2那一列和column1相比一致性最高的类别,并打印类别和一致比例

import pandas as pd
import numpy as np# 读取Excel文件
file_path = 'last-all.xlsx'
df = pd.read_excel(file_path)# 指定要比较的列名
column1 = '标注'
column2 = '不含72b'# 将两列内容尝试转换为数字,无法转换的标记为 NaN
df[column1 + '_num'] = pd.to_numeric(df[column1], errors='coerce')
df[column2 + '_num'] = pd.to_numeric(df[column2], errors='coerce')# 比较数字列的内容是否一致,非数字内容标记为 NaN
differences = df[column1 + '_num'] != df[column2 + '_num']# 找出不一致的部分及其行号
diff_df = df[differences].copy()
diff_df['差异'] = df[column1].astype(str) + ' → ' + df[column2].astype(str)# 统计每类不一致的部分及其比例
diff_counts = diff_df['差异'].value_counts()
diff_percentages = (diff_counts / len(diff_df)) * 100# 计算总体一致性
total_differences = len(diff_df)
total_rows = len(df)
percentage_differences = (total_differences / total_rows) * 100
consistency = (1 - percentage_differences / 100)
print(f"一致性为 {consistency:.2f}")
print(f"\n一共有 {total_differences} 条不一样的结果,占总数的比例为 {percentage_differences:.2f}%。")# 打印统计结果
print("每类不一致的部分占比 (从高到低排序):")
for diff, percentage in zip(diff_counts.index, diff_percentages):print(f"{diff}: {percentage:.2f}%")# 找出column2中与column1相比一致性最高的类别
df['一致'] = df[column1 + '_num'] == df[column2 + '_num']
consistency_by_category = df[df['一致']].groupby(column2).size()# 计算每个类别的总体比例(占column2中的比例)
total_by_category = df.groupby(column2).size()
highest_consistency_category = (consistency_by_category / total_by_category).idxmax()
highest_consistency_percentage = (consistency_by_category / total_by_category).max() * 100# 打印一致性最高的类别及其比例
print(f"\n在 {column2} 列中,与 {column1} 列相比一致性最高的类别是 '{highest_consistency_category}',一致比例为 {highest_consistency_percentage:.2f}%。")

这篇关于excel比较两列差异性和一致性,统计之后降序排列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132898

相关文章

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

java poi实现Excel多级表头导出方式(多级表头,复杂表头)

《javapoi实现Excel多级表头导出方式(多级表头,复杂表头)》文章介绍了使用javapoi库实现Excel多级表头导出的方法,通过主代码、合并单元格、设置表头单元格宽度、填充数据、web下载... 目录Java poi实现Excel多级表头导出(多级表头,复杂表头)上代码1.主代码2.合并单元格3.

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不