代码随想录算法训练营第20天 | 第七章 回溯算法 part02

2024-09-03 08:20

本文主要是介绍代码随想录算法训练营第20天 | 第七章 回溯算法 part02,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第七章 回溯算法 part02

    • 39. 组合总和
    • 40. 组合总和 II
      • startIndex去重
      • bool used去重
    • 131. 分割回文串


39. 组合总和

本题是集合里的元素可以重复使用无数次,与组合问题的差别主要在于 startIndex 的控制。

  • 题目链接/文章讲解:组合总和
  • 视频讲解:点击观看
    递归边界
    当 sum > target 时,直接返回,不再继续递归。
    当 sum == target 时,说明当前组合符合要求,将其加入 result。
    循环结构
    在每次递归时,我们从 startIndex 开始遍历 candidates 数组,确保递归的下一步仍然可以使用当前的元素(因为可以重复选取相同的元素)。
    使用 path.push_back() 将当前选中的元素加入路径,并在递归完成后通过 path.pop_back() 撤销该选择(回溯)。
    参数传递
    递归函数 backtracking 接受 sum 和 startIndex 作为参数,保持对当前路径的跟踪。
    其实只要知道思路,整体上还是不算难得
class Solution {
public:
vector<vector<int>> result;
vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex){if (sum > target) {return;}if (sum == target) {result.push_back(path);return;}for (int i = startIndex; i < candidates.size(); i++){path.push_back(candidates[i]);backtracking(candidates, target, sum+candidates[i],  i);path.pop_back();}
}vector<vector<int>> combinationSum(vector<int>& candidates, int target) {result.clear();path.clear();int startIndex=0;int sum=0;backtracking(candidates,target,sum,  startIndex);return result;     }
};

剪枝优化
对于sum已经大于target的情况,其实是依然进入了下一层递归,只是下一层递归结束判断的时候,会判断sum > target的话就返回。

其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。因此,只要for循环更改下即可。

for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)

40. 组合总和 II

本题开始涉及到一个关键问题:去重。

这题看似挺简单的,只要层层回溯即可,但是发现最大的问题,因为数组中给的数可能会重复,得到的结果可能会相同。所以核心问题还是去重,还是去重,很麻烦,题目给的集合中有重复元素,求出的组合可能重复,但题目要求不能有重复组合,因此要注意去重的操作。

startIndex去重

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);return;}for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {// 要对同一树层使用过的元素进行跳过if (i > startIndex && candidates[i] == candidates[i - 1]) {continue;}sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i + 1); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次sum -= candidates[i];path.pop_back();}}public:vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {path.clear();result.clear();// 首先把给candidates排序,让其相同的元素都挨在一起。sort(candidates.begin(), candidates.end());backtracking(candidates, target, 0, 0);return result;}
};

个人觉得这题还是先从startIndex方法去重好理解,给的第一种方法确实要琢磨很久,所以先从第一种方法开始,最好的方法便是先将数组进行排序,这时候不断进行回溯处理,

if (i > startIndex && candidates[i] == candidates[i - 1]) continue;

核心是以上这两行代码

bool used去重

此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用。主要是研究下这张图,基本上只要把这张图按照回溯递归的顺序理一遍就能理解。还是有点难度的,建议按照图片流程多看两遍,就能理解整体思路,重点体会used的作用
在这里插入图片描述
当 candidates[i] == candidates[i - 1] 且 used[i - 1] == 0 时,表示当前的递归路径和上一层路径包含了重复元素,不应该再次选择该元素,避免重复计算。
例如,图中当 i = 1 时,candidates[1] == candidates[0],这时检查 used[i-1],如果 used[0] == 0,表示前一个 1 没有在当前路径上被使用过,所以不能再选 candidates[1],避免重复选择。

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex,vector<bool>& used) {if (sum == target) {result.push_back(path);return;}for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {// 要对同一树层使用过的元素进行跳过if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) continue;path.push_back(candidates[i]);used[i] = true;backtracking(candidates, target, sum+ candidates[i], i + 1,used); used[i] = false;path.pop_back();}}public:vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {vector<bool> used(candidates.size(), false);path.clear();result.clear();// 首先把给candidates排序,让其相同的元素都挨在一起。sort(candidates.begin(), candidates.end());backtracking(candidates, target, 0, 0,used);return result;}
};
  • 题目链接/文章讲解:组合总和 II
  • 视频讲解:点击观看

131. 分割回文串

这道题目相对较难,涉及到分割问题。最开始还以为找出一个字符串的所有回文子字符串,结果发现居然找出拆成全是回文串那就和上面的回溯题目类似了在这里插入图片描述
看论文的时候,注意要按照顺序来拆分成一块一块。比如判断是否为回文,就是简单的双指针法。核心思想是:循环从 startIndex 到字符串末尾,逐个提取子串。
对于每个提取出的子串,调用 isHuiWen 函数判断是否是回文。
如果是回文,将其添加到当前路径 path 中,并递归调用 backtracking,从下一个位置继续查找。
回溯过程中,使用 path.pop_back() 撤销上一步的选择,继续寻找其他可能的分割。
当 startIndex 超过字符串长度时,表示已经找到了一组分割方案,保存当前的 path 到 result。
只要把上面思路搞懂,整体就不难了。

class Solution {
public:vector<vector<string>> result;vector<string> path;bool isHuiWen(const string& s) {int left = 0;  int right = s.size() - 1;  while (left < right) {if (s[left] != s[right]) {return false;  }left++;  right--; }return true; 
}void backtracking(string& s,int startIndex) {if (startIndex >= s.size()) {result.push_back(path);return;}for (int i = startIndex; i < s.size(); i++){string str = s.substr(startIndex, i - startIndex + 1);if (isHuiWen(str) ) {  path.push_back(str);}else {                // 如果不是则直接跳过continue;}backtracking(s, i + 1);path.pop_back(); }    
}vector<vector<string>> partition(string s) {path.clear();result.clear();backtracking(s, 0);return result;//经典,回溯万能套路}
};
  • 题目链接/文章讲解:分割回文串
  • 视频讲解:点击观看

这篇关于代码随想录算法训练营第20天 | 第七章 回溯算法 part02的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132507

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识