基础闯关5

2024-09-03 06:52
文章标签 基础 闯关

本文主要是介绍基础闯关5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、XTuner简介

XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。

高效

  • 支持大语言模型 LLM、多模态图文模型 VLM 的预训练及轻量级微调。XTuner 支持在 8GB 显存下微调 7B 模型,同时也支持多节点跨设备微调更大尺度模型(70B+)。
  • 自动分发高性能算子(如 FlashAttention、Triton kernels 等)以加速训练吞吐。
  • 兼容 DeepSpeed ,轻松应用各种 ZeRO 训练优化策略。

灵活

  • 支持多种大语言模型,包括但不限于 InternLMMixtral-8x7BLlama 2ChatGLMQwenBaichuan
  • 支持多模态图文模型 LLaVA 的预训练与微调。利用 XTuner 训得模型 LLaVA-InternLM2-20B 表现优异。
  • 精心设计的数据管道,兼容任意数据格式,开源数据或自定义数据皆可快速上手。
  • 支持 QLoRALoRA、全量参数微调等多种微调算法,支撑用户根据具体需求作出最优选择。

全能

  • 支持增量预训练、指令微调与 Agent 微调。
  • 预定义众多开源对话模版,支持与开源或训练所得模型进行对话。
  • 训练所得模型可无缝接入部署工具库 LMDeploy、大规模评测工具库 OpenCompass 及 VLMEvalKit

二、环境配置

我们首先来配置XTuner实验环境。首先克隆Tutoral仓库到本地:

mkdir -p /root/InternLM/Tutorial
git clone -b camp3  https://github.com/InternLM/Tutorial /root/InternLM/Tutorial

配置Python实验环境:

# 创建虚拟环境
conda create -n xtuner0121 python=3.10 -y# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner0121# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3 streamlit==1.36.0

从源码部署XTuner:

# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code
cd /root/InternLM/code
git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121# 执行安装
pip install -e '.[deepspeed]'

随后我们要准备需要微调的模型:InternLM2-chat-1.8B。由于开发机已经有模型文件,因此我们直接创建软链接即可:

# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTuner
cd /root/InternLM/XTuner
mkdir -p Shanghai_AI_Laboratory
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b

模型文件结构如下:

├── Shanghai_AI_Laboratory
│   └── internlm2-chat-1_8b -> /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b
│       ├── README.md
│       ├── config.json
│       ├── configuration.json
│       ├── configuration_internlm2.py
│       ├── generation_config.json
│       ├── model-00001-of-00002.safetensors
│       ├── model-00002-of-00002.safetensors
│       ├── model.safetensors.index.json
│       ├── modeling_internlm2.py
│       ├── special_tokens_map.json
│       ├── tokenization_internlm2.py
│       ├── tokenization_internlm2_fast.py
│       ├── tokenizer.model
│       └── tokenizer_config.json

三、前置实验

我们首先来看一看没有经过微调的模型的表现。使用streamlit部署模型应用:

streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

我们从浏览器打开应用,并测试回答“请介绍一下你自己”和“你在实战营做什么?”两个问题:

可以看到,模型无法回答这些问题。接下来我们通过进行微调来改变模型的输出。

四、模型微调

1. 数据集

下面我们对模型进行指令微调。首先需要准备微调数据,为了简单,我们就采用以上两个问题作为指令微调数据。

数据位于datas文件夹下:

cd /root/InternLM/XTuner
mkdir -p datas 

/root/InternLM/XTuner文件夹创建xtuner_generate_assistant.py,内容如下:

import json# 设置用户的名字
name = '幻梦同志'
# 设置需要重复添加的数据次数
n =  3750# 初始化数据
data = [{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])data.append(data[1])# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)

以上代码将两条对话数据重复了3750次,作为微调指令数据。随后执行脚本来生成数据文件:

python xtuner_generate_assistant.py

至此我们已经准备好了模型和数据集文件。接下来我们来进行微调参数配置。

2. 微调参数配置

XTuner内预置了大量的配置文件。我们使用qlora算法来进行低成本微调,选择最匹配的配置文件到当前文件夹:

xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 

随后需要对配置文件进行修改。

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2-chat-1_8b'
+ pretrained_model_name_or_path = '/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b'- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = 'datas/assistant.json'evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)

在原文件中修改以上部分,即可适配我们的微调任务。

我们使用一行命令即可启动微调:

xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

训练完成后,微调的Adapters位于当前目录的work_dirs 文件夹下。随后我们将pth的模型参数转换为huggingface格式参数:

pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf 

最后,我们可以选择将原始模型和Adapters 进行合并,得到最后的模型:

xtuner convert merge /root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

3. 微调后模型实验

下一步,我们来测试微调后模型回答上面两个问题的能力。我们可以再次运行xtuner_streamlit_demo.py脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

# 直接修改脚本文件第18行
- model_name_or_path = "/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
+ model_name_or_path = "/root/InternLM/XTuner/merged"

使用streamlit启动应用:

streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py 

我们在浏览器打开应用,并输入相关内容:

模型能够遵循我们的指令。

这篇关于基础闯关5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1132334

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组