【Python自动化办公】复制Excel数据:将各行分别重复指定次数

本文主要是介绍【Python自动化办公】复制Excel数据:将各行分别重复指定次数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍基于Python语言,读取Excel表格文件数据,并将其中符合我们特定要求那一行加以复制指定的次数,而不符合要求那一行则不复制;并将所得结果保存为新的Excel表格文件的方法。

首先,我们来明确一下本文的具体需求。现有一个Excel表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(也就是inf_dif这一列)数据比较关键,我们希望对这一列数据加以处理——对于每一行,如果这一行的这一列数据的值在指定的范围内,那么就将这一行复制指定的次数(复制的意思相当于就是,新生成一个和当前行一摸一样数据的新行);而对于符合我们要求的行,其具体要复制的次数也不是固定的,也要根据这一行的这一列数据的值来判断——比如如果这个数据在某一个值域内,那么这一行就复制10次;而如果在另一个值域内,这一行就复制50次等。

image

知道了需求,我们就可以开始代码的书写。其中,本文用到的具体代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Thu Jul  6 22:04:48 2023@author: fkxxgis
"""import numpy as np
import pandas as pd
import matplotlib.pyplot as pltoriginal_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Over_NIR_0717_2.csv"df = pd.read_csv(original_file_path)
duplicated_num_0 = 70
duplicated_num_1 = 35
duplicated_num_2 = 7
duplicated_num_3 = 2num = [duplicated_num_0 if (value <= -0.12 or value >= 0.12) else duplicated_num_1 if (value <= -0.1 or value >= 0.1) \
else duplicated_num_2 if (value <= -0.07 or value >= 0.07) else duplicated_num_3 if (value <= -0.03 or value >= 0.03) \
else 1 for value in df.inf_dif]
duplicated_df = df.loc[np.repeat(df.index.values, num)]plt.figure(0)
plt.hist(df["inf_dif"], bins = 50)
plt.figure(1)
plt.hist(duplicated_df["inf_dif"], bins = 50)duplicated_df.to_csv(result_file_path, index=False)

其中,上述代码的具体含义如下。

首先,我们需要导入所需的库,包括numpypandasmatplotlib.pyplot等,用于后续的数据处理和绘图操作。接下来,即可开始读取原始数据,我们使用pd.read_csv()函数读取文件,并将其存储在一个DataFrame对象df中;这里的原始文件路径由original_file_path变量指定。

随后,我们开始设置重复次数。在这里,我们根据特定的条件,为每个值设定重复的次数。根据inf_dif列的值,将相应的重复次数存储在num列表中。根据不同的条件,使用条件表达式(if-else语句)分别设定了不同的重复次数。

接下来,我们使用loc函数和np.repeat()函数,将数据按照重复次数复制,并将结果存储在duplicated_df中。

最后,为了对比我们数据重复的效果,可以绘制直方图。在这里,我们使用matplotlib.pyplot库中的hist()函数绘制了两个直方图;其中,第一个直方图是原始数据集dfinf_dif列的直方图,第二个直方图是复制后的数据集duplicated_dfinf_dif列的直方图。通过指定bins参数,将数据分成50个区间。

完成上述操作后,我们即可保存数据。将复制后的数据集duplicated_df保存为.csv格式文件,路径由result_file_path变量指定。

执行上述代码,我们将获得如下所示的两个直方图;其中,第一个直方图是原始数据集dfinf_dif列的直方图,也就是还未进行数据复制的直方图。

其次,第二个直方图是复制后的数据集duplicated_dfinf_dif列的直方图。


可以看到,经过前述代码的处理,我们原始的数据分布情况已经有了很明显的改变。


最后这里免费分享给大家一份Python全台学习资料,包含视频、源码。课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
编程资料、学习路线图、源代码、软件安装包【点击这里】领取!

Python所有方向的学习路线图,清楚各个方向要学什么东西
100多节Python课程视频,涵盖必备基础、爬虫和数据分析
100多个Python实战案例,学习不再是只会理论
华为出品独家Python漫画教程,手机也能学习
历年互联网企业Python面试真题,复习时非常方便
请添加图片描述
请添加图片描述

这篇关于【Python自动化办公】复制Excel数据:将各行分别重复指定次数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131674

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring