代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II

2024-09-03 01:12

本文主要是介绍代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路:

这个问题可以通过动态规划来解决。我们可以使用一个二维数组 dp 来保存从起点到达每个格子的路径数量。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
  2. 状态转移方程:

    • 机器人每次只能向下或者向右移动一步,所以到达 dp[i][j] 的路径数等于从上方格子 dp[i-1][j] 到达的路径数与从左方格子 dp[i][j-1] 到达的路径数之和,即: dp[i][j]=dp[i−1][j]+dp[i][j−1]dp[i][j] = dp[i-1][j] + dp[i][j-1]dp[i][j]=dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,因为机器人从起点开始,所以路径数为 1。
    • 第一行和第一列的路径数也应该初始化,因为在这些位置上,机器人只能从左到右(对于第一行)或者从上到下(对于第一列)移动,因此:
      • 对于第一行(i = 0),dp[0][j] = 1(因为机器人只能一直向右移动)。
      • 对于第一列(j = 0),dp[i][0] = 1(因为机器人只能一直向下移动)。
  4. 计算路径数:

    • 我们可以从左上角 (0,0) 开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化第一行和第一列for (int i = 0; i < m; ++i) {dp[i][0] = 1;}for (int j = 0; j < n; ++j) {dp[0][j] = 1;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};

 63. 不同路径 II 

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:

要解决这个问题,我们可以使用动态规划方法。与之前的没有障碍物的路径问题类似,但需要考虑障碍物的存在。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
    • 如果 obstacleGrid[i][j] == 1,说明该格子为障碍物,不可通行,则 dp[i][j] = 0
    • 否则,路径数为从上方格子 dp[i-1][j] 和左方格子 dp[i][j-1] 到达的路径数之和。
  2. 状态转移方程:

    dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]dp[i][j] = \text{obstacleGrid}[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1]dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,但如果起点本身是障碍物,则 dp[0][0] = 0
    • 第一行和第一列的路径数需要特别处理,因为只能从一个方向到达:
      • 对于第一行(i = 0),如果当前格子及其左侧没有障碍物,则路径数为 1,否则为 0。
      • 对于第一列(j = 0),如果当前格子及其上方没有障碍物,则路径数为 1,否则为 0。
  4. 计算路径数:

    • 从左上角开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();// 如果起点有障碍物,直接返回 0if (obstacleGrid[0][0] == 1) return 0;vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化起点dp[0][0] = 1;// 初始化第一列for (int i = 1; i < m; ++i) {dp[i][0] = (obstacleGrid[i][0] == 0 && dp[i-1][0] == 1) ? 1 : 0;}// 初始化第一行for (int j = 1; j < n; ++j) {dp[0][j] = (obstacleGrid[0][j] == 0 && dp[0][j-1] == 1) ? 1 : 0;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (obstacleGrid[i][j] == 0) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}
};

这篇关于代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131602

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓