代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II

2024-09-03 01:12

本文主要是介绍代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路:

这个问题可以通过动态规划来解决。我们可以使用一个二维数组 dp 来保存从起点到达每个格子的路径数量。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
  2. 状态转移方程:

    • 机器人每次只能向下或者向右移动一步,所以到达 dp[i][j] 的路径数等于从上方格子 dp[i-1][j] 到达的路径数与从左方格子 dp[i][j-1] 到达的路径数之和,即: dp[i][j]=dp[i−1][j]+dp[i][j−1]dp[i][j] = dp[i-1][j] + dp[i][j-1]dp[i][j]=dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,因为机器人从起点开始,所以路径数为 1。
    • 第一行和第一列的路径数也应该初始化,因为在这些位置上,机器人只能从左到右(对于第一行)或者从上到下(对于第一列)移动,因此:
      • 对于第一行(i = 0),dp[0][j] = 1(因为机器人只能一直向右移动)。
      • 对于第一列(j = 0),dp[i][0] = 1(因为机器人只能一直向下移动)。
  4. 计算路径数:

    • 我们可以从左上角 (0,0) 开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化第一行和第一列for (int i = 0; i < m; ++i) {dp[i][0] = 1;}for (int j = 0; j < n; ++j) {dp[0][j] = 1;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};

 63. 不同路径 II 

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:

要解决这个问题,我们可以使用动态规划方法。与之前的没有障碍物的路径问题类似,但需要考虑障碍物的存在。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
    • 如果 obstacleGrid[i][j] == 1,说明该格子为障碍物,不可通行,则 dp[i][j] = 0
    • 否则,路径数为从上方格子 dp[i-1][j] 和左方格子 dp[i][j-1] 到达的路径数之和。
  2. 状态转移方程:

    dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]dp[i][j] = \text{obstacleGrid}[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1]dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,但如果起点本身是障碍物,则 dp[0][0] = 0
    • 第一行和第一列的路径数需要特别处理,因为只能从一个方向到达:
      • 对于第一行(i = 0),如果当前格子及其左侧没有障碍物,则路径数为 1,否则为 0。
      • 对于第一列(j = 0),如果当前格子及其上方没有障碍物,则路径数为 1,否则为 0。
  4. 计算路径数:

    • 从左上角开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();// 如果起点有障碍物,直接返回 0if (obstacleGrid[0][0] == 1) return 0;vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化起点dp[0][0] = 1;// 初始化第一列for (int i = 1; i < m; ++i) {dp[i][0] = (obstacleGrid[i][0] == 0 && dp[i-1][0] == 1) ? 1 : 0;}// 初始化第一行for (int j = 1; j < n; ++j) {dp[0][j] = (obstacleGrid[0][j] == 0 && dp[0][j-1] == 1) ? 1 : 0;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (obstacleGrid[i][j] == 0) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}
};

这篇关于代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131602

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La