字符串匹配算法之KMP算法和BM算法

2024-09-02 17:18
文章标签 算法 字符串 匹配 kmp bm

本文主要是介绍字符串匹配算法之KMP算法和BM算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[尊重原创]-原文链接在这里->http://blogread.cn/it/article/3975?f=wb

本文主要介绍KMP算法和BM算法,它们分别是前缀匹配和后缀匹配的经典算法。所谓前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从左到右;所谓后缀匹配是指:模式串和母串的的比较从右到左,模式串的移动从左到右。看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同。下文分别从最简单的前缀蛮力匹配算法和后缀蛮力匹配算法入手,详细的介绍KMP算法和BM算法以及它们的实现。

KMP算法

    首先来看一下前缀蛮力匹配算法的代码(以下代码从linux源码string.h中抠出),模式串和母串的比较是从左到右进行(strncmp()),如果找不到和模式串相同的子串,则从左到右移动模式串,距离为1(s++)。

char * strstr(register const char *s, register const char *wanted)
{register const size_t len = strlen(wanted);if (len == 0) return (char *)s;while (*s != *wanted || strncmp(s, wanted, len))if (*s++ == \'\0\')return (char *)NULL;return (char *)s;
}

    KMP算法中的KMP分别是指三个人名:Knuth、Morris、Pratt,其本质也是前缀匹配算法,对比前缀蛮力匹配算法,区别在于它会动态调整每次模式串的移动距离,而不仅仅是加一,从而加快匹配过程。下图通过一个直观的例子展示前缀蛮力匹配算法和KMP算法的区别,前文提过,这二者唯一的不同在于模式串移动距离。

     

    上图中,前缀蛮力匹配算法发现匹配不上,就向右移动距离1,而KMP算法根据已经比较过的前缀信息,了解到应该移动距离为2;换句话说针对母串的下一个匹配字符,KMP算法了解它下回应该匹配模式串的哪个位置,比如上图中,针对母串的第i+1个字符,KMP算法了解它应该匹配模式串的第k+1个字符。为什么会是这样,这是因为母串的子串T[i-k, i]=aba,而模式串的子串P[0,k]=aba,这二者正好相等。所以模式串应该移动到这个位置,从而让母串的第i+1个字符和模式串的第k+1个字符继续比较。

    那k值又是如何寻找?请注意上图中,模式串位置j已经匹配上母串的位置i,也就是T[i-k, i] = P[j-k, j]=aba;根据前文的T[i-k, i] = P[0, k] = aba, 从而得出P[0, k] = P[j-k, j] = aba。通过观察发现,就是在模式的子串[0, j]中寻找一个最长前缀[0,k],从而使得[j-k, j] = [0,k];

     于是可以定义一个jump数组,jump[j]=k,表示满足P[0, k] ==P[j-k, j] 的最大k值,或者表述为:如果模式串j+1匹配不上母串的i+1,那跳转到模式串k+1继续比较。有了这个jump数组,就很容易写出kmp算法的伪代码:

j:=0;
for i:=1 to n do
Beginwhile (j>0) and (P[j+1]<>T[i]) do j:=jump[j];[if P[j+1]=T[i] then j:=j+1;if j=m thenBeginwriteln(\'Pattern occurs with shift \',i-m);end;
end;

    KMP算法中jump数组的构建可以通过归纳法来解决,首先确定jump[1]=0;假设jump[j]=k,也就是P[0, k] == P[j-k, k],如果P[j+1] == P[k+1],那么得出[0,k+1] = P[j-k, j+1],从而更加定义得出jump[j+1] = k+1;

     如果P[j+1] != P[k+1],那就接着比较P[j+1] ?= P[k1+1],其中(jump[k] = k1),根据(jump[k]=k1)的定义,P[0,k1] == P[k-k1, k],根据(jump[j]=k)的定义,P[0, k] == P[j-k, k],根据这两个等式,推出P[0, k1] == P[j-k1, j],如果此时P[j+1] == P[k1+1],则得出:jump[j+1] = K1 +1 = jump[k] +1。

     如果P[j+1] != P[K1+1],继续递归比较P[j+1] 和P[jump[jump[k]]+1] …. P[1];

     如果依次比较都不相等,那么jump[j+1] = 0;写成伪代码如下,可以看出其实就是模式串自我匹配的过程。

jump[1]:=0;
j:=0;
for i:=2 to m do
beginwhile (j>0) and (P[j+1]<>P[i]) do j:=jump[j];if P[j+1]=P[i] then  j:=j+1;jump[i]:=j;
end;

    考虑模式串匹配不上母串的最坏情况,前缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n),其中n为母串的长度,m为模式串的长度。KMP算法最差的时间复杂度是O(n);最好的时间复杂度是O(n/m)。

BM算法

    后缀匹配,是指模式串的比较从右到左,模式串的移动也是从左到右的匹配过程,经典的BM算法其实是对后缀蛮力匹配算法的改进。所以还是先从最简单的后缀蛮力匹配算法开始。下面直接给出伪代码,注意这一行代码:j++;BM算法所做的唯一的事情就是改进了这行代码,即模式串不是每次移动一步,而是根据已经匹配的后缀信息,从而移动更多的距离。

j = 0;
while (j <= strlen(T) - strlen(P)) {for (i = strlen(P) - 1; i >= 0 && P[i] ==T[i + j]; --i)if (i < 0)match;else++j;
}

    为了实现更快移动模式串,BM算法定义了两个规则,好后缀规则和坏字符规则,如下图可以清晰的看出他们的含义。利用好后缀和坏字符可以大大加快模式串的移动距离,不是简单的++j,而是j+=max (shift(好后缀), shift(坏字符))

     

    先来看如何根据坏字符来移动模式串,shift(坏字符)分为两种情况:

  • 坏字符没出现在模式串中,这时可以把模式串移动到坏字符的下一个字符,继续比较,如下图:

        

  • 坏字符出现在模式串中,这时可以把模式串第一个出现的坏字符和母串的坏字符对齐,当然,这样可能造成模式串倒退移动,如下图:

        

         为了用代码来描述上述的两种情况,设计一个数组bmBc[\'k\'],表示坏字符‘k’在模式串中出现的位置距离模式串末尾的最大长度,那么当遇到坏字符的时候,模式串可以移动距离为: shift(坏字符) = bmBc[T[i]]-(m-1-i)。如下图:

         

         数组bmBc的创建非常简单,直接贴出代码如下:

    void preBmBc(char *x, int m, int bmBc[]) {int i;for (i = 0; i < ASIZE; ++i)bmBc[i] = m;for (i = 0; i < m - 1; ++i)bmBc[x[i]] = m - i - 1;
    }
    

        再来看如何根据好后缀规则移动模式串,shift(好后缀)分为三种情况:

  • 模式串中有子串匹配上好后缀,此时移动模式串,让该子串和好后缀对齐即可,如果超过一个子串匹配上好后缀,则选择最靠左边的子串对齐。

        

  • 模式串中没有子串匹配上后后缀,此时需要寻找模式串的一个最长前缀,并让该前缀等于好后缀的后缀,寻找到该前缀后,让该前缀和好后缀对齐即可。

        

  • 模式串中没有子串匹配上后后缀,并且在模式串中找不到最长前缀,让该前缀等于好后缀的后缀。此时,直接移动模式到好后缀的下一个字符。

        

        为了实现好后缀规则,需要定义一个数组suffix[],其中suffix[i] = s 表示以i为边界,与模式串后缀匹配的最大长度,如下图所示,用公式可以描述:满足P[i-s, i] == P[m-s, m]的最大长度s。

         

        构建suffix数组的代码如下:

    suffix[m-1]=m;
    for (i=m-2;i>=0;--i){q=i;while(q>=0&&P[q]==P[m-1-i+q])--q;suffix[i]=i-q;
    }
    

        有了suffix数组,就可以定义bmGs[]数组,bmGs[i] 表示遇到好后缀时,模式串应该移动的距离,其中i表示好后缀前面一个字符的位置(也就是坏字符的位置),构建bmGs数组分为三种情况,分别对应上述的移动模式串的三种情况

  • 模式串中有子串匹配上好后缀

        

  • 模式串中没有子串匹配上好后缀,但找到一个最大前缀

        

  • 模式串中没有子串匹配上好后缀,但找不到一个最大前缀

        

        构建bmGs数组的代码如下:

    void preBmGs(char *x, int m, int bmGs[]) {int i, j, suff[XSIZE];suffixes(x, m, suff);for (i = 0; i < m; ++i)bmGs[i] = m;j = 0;for (i = m - 1; i >= 0; --i)if (suff[i] == i + 1)for (; j < m - 1 - i; ++j)if (bmGs[j] == m)bmGs[j] = m - 1 - i;for (i = 0; i <= m - 2; ++i)bmGs[m - 1 - suff[i]] = m - 1 - i;
    }
    

        再来重写一遍BM算法:

    j = 0;
    while (j <= strlen(T) - strlen(P)) {for (i = strlen(P) - 1; i >= 0 && P[i] ==T[i + j]; --i)if (i < 0)match;elsej += max(bmGs[i], bmBc[T[i]]-(m-1-i));
    }
    

        考虑模式串匹配不上母串的最坏情况,后缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n),其中n为母串的长度,m为模式串的长度。BM算法时间复杂度最好是O(n/(m+1)),最差是多少?留给读者思考。

这篇关于字符串匹配算法之KMP算法和BM算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130579

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

hdu 3065 AC自动机 匹配串编号以及出现次数

题意: 仍旧是天朝语题。 Input 第一行,一个整数N(1<=N<=1000),表示病毒特征码的个数。 接下来N行,每行表示一个病毒特征码,特征码字符串长度在1—50之间,并且只包含“英文大写字符”。任意两个病毒特征码,不会完全相同。 在这之后一行,表示“万恶之源”网站源码,源码字符串长度在2000000之内。字符串中字符都是ASCII码可见字符(不包括回车)。