均值滤波器的原理及实现

2024-09-02 15:38
文章标签 实现 原理 均值 滤波器

本文主要是介绍均值滤波器的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.均值滤波器

平滑线性空间滤波器的输出是包含在滤波器模板邻域内的像素的简单平均值,也就是均值滤波器。均值滤波器也是低通滤波器,均值滤波器很容易理解,即把邻域内的平均值赋给中心元素。

均值滤波器用来降低噪声,均值滤波器的主要应用是去除图像中的不相关细节,不相关是指与滤波器的模板相比较小的像素区域。模糊图片以便得到感兴趣物体的粗略描述,因此那些较小的物体的灰度就会与背景混合在一起,较大的物体则变的像斑点而易于检测。模板的大小由那些即将融入背景中的物体尺寸决定。

均值滤波器的缺点是存在着边缘模糊的问题。

均值滤波器的模板由标准像素平均和加权平均之分。如下图所示

2 C++实现均值滤波器

#include <iostream>
#include<opencv2/opencv.hpp>void getCount(double *count,int dim)
{int mn=dim*dim;for(int i=0;i<dim*dim;i++){count[i]=1.0/mn;}
}void getCountWeight(double *count,int dim)
{int mn=dim*dim;for(int i=0;i<mn;i++){if(i==mn/2)count[i]=1./2;elsecount[i]=(1/2.)*(1./(mn-1));}
}void meanFilter(cv::Mat &dst,cv::Mat &img,int dim){int channels=img.channels();dst=cv::Mat::zeros(img.size(),img.type());double count[dim*dim]={0};getCountWeight(count,dim);for(int row=0;row<img.rows;row++){for(int col=0;col<img.cols;col++){if(row>=dim/2&&row<img.rows-dim/2&&col>=dim/2&&col<img.cols-dim/2){int c=0;double sum1=0;double sum2=0;double sum3=0;for(int i=row-dim/2;i<=row+dim/2;i++){for(int j=col-dim/2;j<=col+dim/2;j++){if(channels==1){sum1+=count[c]*img.at<uchar>(i,j);}else if(channels==3){sum1+=count[c]*img.at<cv::Vec3b>(i,j)[0];sum2+=count[c]*img.at<cv::Vec3b>(i,j)[1];sum3+=count[c]*img.at<cv::Vec3b>(i,j)[2];}c++;}}if(channels==1){dst.at<uchar>(row,col)=(int)sum1;}else if(channels==3){dst.at<cv::Vec3b>(row,col)[0]=(int)sum1;dst.at<cv::Vec3b>(row,col)[1]=(int)sum2;dst.at<cv::Vec3b>(row,col)[2]=(int)sum3;}}else {if(channels==1)dst.at<uchar>(row, col) = img.at<uchar>(row, col);else if(channels==3){dst.at<cv::Vec3b>(row,col)[0]=img.at<cv::Vec3b>(row,col)[0];dst.at<cv::Vec3b>(row,col)[1]=img.at<cv::Vec3b>(row,col)[1];dst.at<cv::Vec3b>(row,col)[2]=img.at<cv::Vec3b>(row,col)[2];}}}}
}int main() {cv::Mat src=cv::imread("/home/dyf/Documents/数字图像/空间滤波器/Mean-filter/3.png",0);cv::Mat dst,dst1;cv::imshow("src",src);meanFilter(dst,src,3);cv::imshow("dst",dst);cv::blur(src,dst1,cv::Size(3,3));cv::imshow("dst1",dst1);cv::waitKey(0);return 0;
}

3 均值滤波器处理效果

原图像

下图左侧为使用标准均值方法处理的结果,右侧为opencv所带的均值滤波器处理结果

 

原图像:

左侧为带权重均值处理结果(中心位置为0.5,其他的邻域平分0.5)   右侧为标准均值处理结果 

这篇关于均值滤波器的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130370

相关文章

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很