黑马-Cloud21版-面试篇13:Sentinel源码分析

2024-09-02 08:44

本文主要是介绍黑马-Cloud21版-面试篇13:Sentinel源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sentinel源码分析

1.Sentinel的基本概念

Sentinel实现限流、隔离、降级、熔断等功能,本质要做的就是两件事情:

  • 统计数据:统计某个资源的访问数据(QPS、RT等信息)
  • 规则判断:判断限流规则、隔离规则、降级规则、熔断规则是否满足

这里的资源就是希望被Sentinel保护的业务,例如项目中定义的controller方法就是默认被Sentinel保护的资源。

1.1.ProcessorSlotChain

实现上述功能的核心骨架是一个叫做ProcessorSlotChain的类。这个类基于责任链模式来设计,将不同的功能(限流、降级、系统保护)封装为一个个的Slot,请求进入后逐个执行即可。

其工作流如图:

在这里插入图片描述

责任链中的Slot也分为两大类:

  • 统计数据构建部分(statistic)
    • NodeSelectorSlot:负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树
    • ClusterBuilderSlot:负责构建某个资源的ClusterNode,ClusterNode可以保存资源的运行信息(响应时间、QPS、block 数目、线程数、异常数等)以及来源信息(origin名称)
    • StatisticSlot:负责统计实时调用数据,包括运行信息、来源信息等
  • 规则判断部分(rule checking)
    • AuthoritySlot:负责授权规则(来源控制)
    • SystemSlot:负责系统保护规则
    • ParamFlowSlot:负责热点参数限流规则
    • FlowSlot:负责限流规则
    • DegradeSlot:负责降级规则

1.2.Node

Sentinel中的簇点链路是由一个个的Node组成的,Node是一个接口,包括下面的实现:

在这里插入图片描述

所有的节点都可以记录对资源的访问统计数据,所以都是StatisticNode的子类。

按照作用分为两类Node:

  • DefaultNode:代表链路树中的每一个资源,一个资源出现在不同链路中时,会创建不同的DefaultNode节点。而树的入口节点叫EntranceNode,是一种特殊的DefaultNode
  • ClusterNode:代表资源,一个资源不管出现在多少链路中,只会有一个ClusterNode。记录的是当前资源被访问的所有统计数据之和。

DefaultNode记录的是资源在当前链路中的访问数据,用来实现基于链路模式的限流规则。ClusterNode记录的是资源在所有链路中的访问数据,实现默认模式、关联模式的限流规则。

例如:我们在一个SpringMVC项目中,有两个业务:

  • 业务1:controller中的资源/order/query访问了service中的资源/goods
  • 业务2:controller中的资源/order/save访问了service中的资源/goods

创建的链路图如下:

在这里插入图片描述

1.3.Entry

默认情况下,Sentinel会将controller中的方法作为被保护资源,那么问题来了,我们该如何将自己的一段代码标记为一个Sentinel的资源呢?

Sentinel中的资源用Entry来表示。声明Entry的API示例:

// 资源名可使用任意有业务语义的字符串,比如方法名、接口名或其它可唯一标识的字符串。
try (Entry entry = SphU.entry("resourceName")) {// 被保护的业务逻辑// do something here...
} catch (BlockException ex) {// 资源访问阻止,被限流或被降级// 在此处进行相应的处理操作
}

1.3.1.自定义资源

例如,我们在order-service服务中,将OrderServicequeryOrderById()方法标记为一个资源。

1)首先在order-service中引入sentinel依赖

<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)然后配置Sentinel地址

spring:cloud:sentinel:transport:dashboard: localhost:8089 # 这里我的sentinel用了8089的端口

3)修改OrderService类的queryOrderById方法

代码这样来实现:

public Order queryOrderById(Long orderId) {// 创建Entry,标记资源,资源名为resource1try (Entry entry = SphU.entry("resource1")) {// 1.查询订单,这里是假数据Order order = Order.build(101L, 4999L, "小米 MIX4", 1, 1L, null);// 2.查询用户,基于Feign的远程调用User user = userClient.findById(order.getUserId());// 3.设置order.setUser(user);// 4.返回return order;}catch (BlockException e){log.error("被限流或降级", e);return null;}
}

4)访问

打开浏览器,访问order服务:http://localhost:8080/order/101

然后打开sentinel控制台,查看簇点链路:

在这里插入图片描述

1.3.2.基于注解标记资源

在之前学习Sentinel的时候,我们知道可以通过给方法添加@SentinelResource注解的形式来标记资源。

在这里插入图片描述

这个是怎么实现的呢?

来看下我们引入的Sentinel依赖包:

在这里插入图片描述

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

在这里插入图片描述

我们来看下SentinelAutoConfiguration这个类:

在这里插入图片描述

可以看到,在这里声明了一个Bean,SentinelResourceAspect


/*** Aspect for methods with {@link SentinelResource} annotation.** @author Eric Zhao*/
@Aspect
public class SentinelResourceAspect extends AbstractSentinelAspectSupport {// 切点是添加了 @SentinelResource注解的类@Pointcut("@annotation(com.alibaba.csp.sentinel.annotation.SentinelResource)")public void sentinelResourceAnnotationPointcut() {}// 环绕增强@Around("sentinelResourceAnnotationPointcut()")public Object invokeResourceWithSentinel(ProceedingJoinPoint pjp) throws Throwable {// 获取受保护的方法Method originMethod = resolveMethod(pjp);// 获取 @SentinelResource注解SentinelResource annotation = originMethod.getAnnotation(SentinelResource.class);if (annotation == null) {// Should not go through here.throw new IllegalStateException("Wrong state for SentinelResource annotation");}// 获取注解上的资源名称String resourceName = getResourceName(annotation.value(), originMethod);EntryType entryType = annotation.entryType();int resourceType = annotation.resourceType();Entry entry = null;try {// 创建资源 Entryentry = SphU.entry(resourceName, resourceType, entryType, pjp.getArgs());// 执行受保护的方法Object result = pjp.proceed();return result;} catch (BlockException ex) {return handleBlockException(pjp, annotation, ex);} catch (Throwable ex) {Class<? extends Throwable>[] exceptionsToIgnore = annotation.exceptionsToIgnore();// The ignore list will be checked first.if (exceptionsToIgnore.length > 0 && exceptionBelongsTo(ex, exceptionsToIgnore)) {throw ex;}if (exceptionBelongsTo(ex, annotation.exceptionsToTrace())) {traceException(ex);return handleFallback(pjp, annotation, ex);}// No fallback function can handle the exception, so throw it out.throw ex;} finally {if (entry != null) {entry.exit(1, pjp.getArgs());}}}
}

简单来说,@SentinelResource注解就是一个标记,而Sentinel基于AOP思想,对被标记的方法做环绕增强,完成资源(Entry)的创建。

1.4.Context

上一节,我们发现簇点链路中除了controller方法、service方法两个资源外,还多了一个默认的入口节点:

sentinel_spring_web_context,是一个EntranceNode类型的节点

这个节点是在初始化Context的时候由Sentinel帮我们创建的。

1.4.1.什么是Context

那么,什么是Context呢?

  • Context 代表调用链路上下文,贯穿一次调用链路中的所有资源( Entry),基于ThreadLocal。
  • Context 维持着入口节点(entranceNode)、本次调用链路的 curNode(当前资源节点)、调用来源(origin)等信息。
  • 后续的Slot都可以通过Context拿到DefaultNode或者ClusterNode,从而获取统计数据,完成规则判断
  • Context初始化的过程中,会创建EntranceNode,contextName就是EntranceNode的名称

对应的API如下:

// 创建context,包含两个参数:context名称、 来源名称
ContextUtil.enter("contextName", "originName");

1.4.2.Context的初始化

那么这个Context又是在何时完成初始化的呢?

1.4.2.1.自动装配

来看下我们引入的Sentinel依赖包:

在这里插入图片描述

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

在这里插入图片描述

我们先看SentinelWebAutoConfiguration这个类:

在这里插入图片描述

这个类实现了WebMvcConfigurer,我们知道这个是SpringMVC自定义配置用到的类,可以配置HandlerInterceptor:

在这里插入图片描述

可以看到这里配置了一个SentinelWebInterceptor的拦截器。

SentinelWebInterceptor的声明如下:

在这里插入图片描述

发现它继承了AbstractSentinelInterceptor这个类。

在这里插入图片描述

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

1.4.2.2.AbstractSentinelInterceptor

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

我们来看看这个类的preHandle实现:

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)throws Exception {try {// 获取资源名称,一般是controller方法的@RequestMapping路径,例如/order/{orderId}String resourceName = getResourceName(request);if (StringUtil.isEmpty(resourceName)) {return true;}// 从request中获取请求来源,将来做 授权规则 判断时会用String origin = parseOrigin(request);// 获取 contextName,默认是sentinel_spring_web_contextString contextName = getContextName(request);// 创建 ContextContextUtil.enter(contextName, origin);// 创建资源,名称就是当前请求的controller方法的映射路径Entry entry = SphU.entry(resourceName, ResourceTypeConstants.COMMON_WEB, EntryType.IN);request.setAttribute(baseWebMvcConfig.getRequestAttributeName(), entry);return true;} catch (BlockException e) {try {handleBlockException(request, response, e);} finally {ContextUtil.exit();}return false;}
}
1.4.2.3.ContextUtil

创建Context的方法就是 ContextUtil.enter(contextName, origin);

我们进入该方法:

public static Context enter(String name, String origin) {if (Constants.CONTEXT_DEFAULT_NAME.equals(name)) {throw new ContextNameDefineException("The " + Constants.CONTEXT_DEFAULT_NAME + " can't be permit to defined!");}return trueEnter(name, origin);
}

进入trueEnter方法:

protected static Context trueEnter(String name, String origin) {// 尝试获取contextContext context = contextHolder.get();// 判空if (context == null) {// 如果为空,开始初始化Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;// 尝试获取入口节点DefaultNode node = localCacheNameMap.get(name);if (node == null) {LOCK.lock();try {node = contextNameNodeMap.get(name);if (node == null) {// 入口节点为空,初始化入口节点 EntranceNodenode = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);// 添加入口节点到 ROOTConstants.ROOT.addChild(node);// 将入口节点放入缓存Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size() + 1);newMap.putAll(contextNameNodeMap);newMap.put(name, node);contextNameNodeMap = newMap;}} finally {LOCK.unlock();}}// 创建Context,参数为:入口节点 和 contextNamecontext = new Context(node, name);// 设置请求来源 origincontext.setOrigin(origin);// 放入ThreadLocalcontextHolder.set(context);}// 返回return context;
}

2.ProcessorSlotChain执行流程

接下来我们跟踪源码,验证下ProcessorSlotChain的执行流程。

2.1.入口

首先,回到一切的入口,AbstractSentinelInterceptor类的preHandle方法:

在这里插入图片描述

还有,SentinelResourceAspect的环绕增强方法:

在这里插入图片描述

可以看到,任何一个资源必定要执行SphU.entry()这个方法:

public static Entry entry(String name, int resourceType, EntryType trafficType, Object[] args)throws BlockException {return Env.sph.entryWithType(name, resourceType, trafficType, 1, args);
}

继续进入Env.sph.entryWithType(name, resourceType, trafficType, 1, args);

@Override
public Entry entryWithType(String name, int resourceType, EntryType entryType, int count, boolean prioritized,Object[] args) throws BlockException {// 将 资源名称等基本信息 封装为一个 StringResourceWrapper对象StringResourceWrapper resource = new StringResourceWrapper(name, entryType, resourceType);// 继续return entryWithPriority(resource, count, prioritized, args);
}

进入entryWithPriority方法:

private Entry entryWithPriority(ResourceWrapper resourceWrapper, int count, boolean prioritized, Object... args)throws BlockException {// 获取 ContextContext context = ContextUtil.getContext();if (context == null) {// Using default context.context = InternalContextUtil.internalEnter(Constants.CONTEXT_DEFAULT_NAME);}// 获取 Slot执行链,同一个资源,会创建一个执行链,放入缓存ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);// 创建 Entry,并将 resource、chain、context 记录在 Entry中Entry e = new CtEntry(resourceWrapper, chain, context);try {// 执行 slotChainchain.entry(context, resourceWrapper, null, count, prioritized, args);} catch (BlockException e1) {e.exit(count, args);throw e1;} catch (Throwable e1) {// This should not happen, unless there are errors existing in Sentinel internal.RecordLog.info("Sentinel unexpected exception", e1);}return e;
}

在这段代码中,会获取ProcessorSlotChain对象,然后基于chain.entry()开始执行slotChain中的每一个Slot. 而这里创建的是其实现类:DefaultProcessorSlotChain.

获取ProcessorSlotChain以后会保存到一个Map中,key是ResourceWrapper,值是ProcessorSlotChain.

所以,一个资源只会有一个ProcessorSlotChain.

2.2.DefaultProcessorSlotChain

我们进入DefaultProcessorSlotChain的entry方法:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, boolean prioritized, Object... args)throws Throwable {// first,就是责任链中的第一个 slotfirst.transformEntry(context, resourceWrapper, t, count, prioritized, args);
}

这里的first,类型是AbstractLinkedProcessorSlot:

在这里插入图片描述

看下继承关系:

在这里插入图片描述

因此,first一定是这些实现类中的一个,按照最早讲的责任链顺序,first应该就是 NodeSelectorSlot

不过,既然是基于责任链模式,所以这里只要记住下一个slot就可以了,也就是next:

在这里插入图片描述

next确实是NodeSelectSlot类型。

而NodeSelectSlot的next一定是ClusterBuilderSlot,依次类推:

在这里插入图片描述

责任链就建立起来了。

2.3.NodeSelectorSlot

NodeSelectorSlot负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args)throws Throwable {// 尝试获取 当前资源的 DefaultNodeDefaultNode node = map.get(context.getName());if (node == null) {synchronized (this) {node = map.get(context.getName());if (node == null) {// 如果为空,为当前资源创建一个新的 DefaultNodenode = new DefaultNode(resourceWrapper, null);HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());cacheMap.putAll(map);// 放入缓存中,注意这里的 key是contextName,// 这样不同链路进入相同资源,就会创建多个 DefaultNodecacheMap.put(context.getName(), node);map = cacheMap;// 当前节点加入上一节点的 child中,这样就构成了调用链路树((DefaultNode) context.getLastNode()).addChild(node);}}}// context中的curNode(当前节点)设置为新的 nodecontext.setCurNode(node);// 执行下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

这个Slot完成了这么几件事情:

  • 为当前资源创建 DefaultNode
  • 将DefaultNode放入缓存中,key是contextName,这样不同链路入口的请求,将会创建多个DefaultNode,相同链路则只有一个DefaultNode
  • 将当前资源的DefaultNode设置为上一个资源的childNode
  • 将当前资源的DefaultNode设置为Context中的curNode(当前节点)

下一个slot,就是ClusterBuilderSlot

2.4.ClusterBuilderSlot

ClusterBuilderSlot负责构建某个资源的ClusterNode,核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,int count, boolean prioritized, Object... args)throws Throwable {// 判空,注意ClusterNode是共享的成员变量,也就是说一个资源只有一个ClusterNode,与链路无关if (clusterNode == null) {synchronized (lock) {if (clusterNode == null) {// 创建 cluster node.clusterNode = new ClusterNode(resourceWrapper.getName(), resourceWrapper.getResourceType());HashMap<ResourceWrapper, ClusterNode> newMap = new HashMap<>(Math.max(clusterNodeMap.size(), 16));newMap.putAll(clusterNodeMap);// 放入缓存,可以是nodeId,也就是resource名称newMap.put(node.getId(), clusterNode);clusterNodeMap = newMap;}}}// 将资源的 DefaultNode与 ClusterNode关联node.setClusterNode(clusterNode);// 记录请求来源 origin 将 origin放入 entryif (!"".equals(context.getOrigin())) {Node originNode = node.getClusterNode().getOrCreateOriginNode(context.getOrigin());context.getCurEntry().setOriginNode(originNode);}// 继续下一个slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.5.StatisticSlot

StatisticSlot负责统计实时调用数据,包括运行信息(访问次数、线程数)、来源信息等。

StatisticSlot是实现限流的关键,其中基于滑动时间窗口算法维护了计数器,统计进入某个资源的请求次数。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args) throws Throwable {try {// 放行到下一个 slot,做限流、降级等判断fireEntry(context, resourceWrapper, node, count, prioritized, args);// 请求通过了, 线程计数器 +1 ,用作线程隔离node.increaseThreadNum();// 请求计数器 +1 用作限流node.addPassRequest(count);if (context.getCurEntry().getOriginNode() != null) {// 如果有 origin,来源计数器也都要 +1context.getCurEntry().getOriginNode().increaseThreadNum();context.getCurEntry().getOriginNode().addPassRequest(count);}if (resourceWrapper.getEntryType() == EntryType.IN) {// 如果是入口资源,还要给全局计数器 +1.Constants.ENTRY_NODE.increaseThreadNum();Constants.ENTRY_NODE.addPassRequest(count);}// 请求通过后的回调.for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {handler.onPass(context, resourceWrapper, node, count, args);}} catch (Throwable e) {// 各种异常处理就省略了。。。context.getCurEntry().setError(e);throw e;}
}

另外,需要注意的是,所有的计数+1动作都包括两部分,以 node.addPassRequest(count);为例:

@Override
public void addPassRequest(int count) {// DefaultNode的计数器,代表当前链路的 计数器super.addPassRequest(count);// ClusterNode计数器,代表当前资源的 总计数器this.clusterNode.addPassRequest(count);
}

具体计数方式,我们后续再看。

接下来,进入规则校验的相关slot了,依次是:

  • AuthoritySlot:负责授权规则(来源控制)
  • SystemSlot:负责系统保护规则
  • ParamFlowSlot:负责热点参数限流规则
  • FlowSlot:负责限流规则
  • DegradeSlot:负责降级规则

2.6.AuthoritySlot

负责请求来源origin的授权规则判断,如图:

在这里插入图片描述

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args)throws Throwable {// 校验黑白名单checkBlackWhiteAuthority(resourceWrapper, context);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

黑白名单校验的逻辑:

void checkBlackWhiteAuthority(ResourceWrapper resource, Context context) throws AuthorityException {// 获取授权规则Map<String, Set<AuthorityRule>> authorityRules = AuthorityRuleManager.getAuthorityRules();if (authorityRules == null) {return;}Set<AuthorityRule> rules = authorityRules.get(resource.getName());if (rules == null) {return;}// 遍历规则并判断for (AuthorityRule rule : rules) {if (!AuthorityRuleChecker.passCheck(rule, context)) {// 规则不通过,直接抛出异常throw new AuthorityException(context.getOrigin(), rule);}}
}

再看下AuthorityRuleChecker.passCheck(rule, context)方法:

static boolean passCheck(AuthorityRule rule, Context context) {// 得到请求来源 originString requester = context.getOrigin();// 来源为空,或者规则为空,都直接放行if (StringUtil.isEmpty(requester) || StringUtil.isEmpty(rule.getLimitApp())) {return true;}// rule.getLimitApp()得到的就是 白名单 或 黑名单 的字符串,这里先用 indexOf方法判断int pos = rule.getLimitApp().indexOf(requester);boolean contain = pos > -1;if (contain) {// 如果包含 origin,还要进一步做精确判断,把名单列表以","分割,逐个判断boolean exactlyMatch = false;String[] appArray = rule.getLimitApp().split(",");for (String app : appArray) {if (requester.equals(app)) {exactlyMatch = true;break;}}contain = exactlyMatch;}// 如果是黑名单,并且包含origin,则返回falseint strategy = rule.getStrategy();if (strategy == RuleConstant.AUTHORITY_BLACK && contain) {return false;}// 如果是白名单,并且不包含origin,则返回falseif (strategy == RuleConstant.AUTHORITY_WHITE && !contain) {return false;}// 其它情况返回truereturn true;
}

2.7.SystemSlot

SystemSlot是对系统保护的规则校验:

在这里插入图片描述

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,boolean prioritized, Object... args) throws Throwable {// 系统规则校验SystemRuleManager.checkSystem(resourceWrapper);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

来看下SystemRuleManager.checkSystem(resourceWrapper);的代码:

public static void checkSystem(ResourceWrapper resourceWrapper) throws BlockException {if (resourceWrapper == null) {return;}// Ensure the checking switch is on.if (!checkSystemStatus.get()) {return;}// 只针对入口资源做校验,其它直接返回if (resourceWrapper.getEntryType() != EntryType.IN) {return;}// 全局 QPS校验double currentQps = Constants.ENTRY_NODE == null ? 0.0 : Constants.ENTRY_NODE.successQps();if (currentQps > qps) {throw new SystemBlockException(resourceWrapper.getName(), "qps");}// 全局 线程数 校验int currentThread = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.curThreadNum();if (currentThread > maxThread) {throw new SystemBlockException(resourceWrapper.getName(), "thread");}// 全局平均 RT校验double rt = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.avgRt();if (rt > maxRt) {throw new SystemBlockException(resourceWrapper.getName(), "rt");}// 全局 系统负载 校验if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {if (!checkBbr(currentThread)) {throw new SystemBlockException(resourceWrapper.getName(), "load");}}// 全局 CPU使用率 校验if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {throw new SystemBlockException(resourceWrapper.getName(), "cpu");}
}

2.8.ParamFlowSlot

ParamFlowSlot就是热点参数限流,如图:

在这里插入图片描述

是针对进入资源的请求,针对不同的请求参数值分别统计QPS的限流方式。

  • 这里的单机阈值,就是最大令牌数量:maxCount

  • 这里的统计窗口时长,就是统计时长:duration

含义是每隔duration时间长度内,最多生产maxCount个令牌,上图配置的含义是每1秒钟生产2个令牌。

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,int count, boolean prioritized, Object... args) throws Throwable {// 如果没有设置热点规则,直接放行if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {fireEntry(context, resourceWrapper, node, count, prioritized, args);return;}// 热点规则判断checkFlow(resourceWrapper, count, args);// 进入下一个 slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.8.1.令牌桶

热点规则判断采用了令牌桶算法来实现参数限流,为每一个不同参数值设置令牌桶,Sentinel的令牌桶有两部分组成:

在这里插入图片描述

这两个Map的key都是请求的参数值,value却不同,其中:

  • tokenCounters:用来记录剩余令牌数量
  • timeCounters:用来记录上一个请求的时间

当一个携带参数的请求到来后,基本判断流程是这样的:

在这里插入图片描述

2.9.FlowSlot

FlowSlot是负责限流规则的判断,如图:

在这里插入图片描述

包括:

  • 三种流控模式:直接模式、关联模式、链路模式
  • 三种流控效果:快速失败、warm up、排队等待

三种流控模式,从底层数据统计角度,分为两类:

  • 对进入资源的所有请求(ClusterNode)做限流统计:直接模式、关联模式
  • 对进入资源的部分链路(DefaultNode)做限流统计:链路模式

三种流控效果,从限流算法来看,分为两类:

  • 滑动时间窗口算法:快速失败、warm up
  • 漏桶算法:排队等待效果

2.9.1.核心流程

核心API如下:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,boolean prioritized, Object... args) throws Throwable {// 限流规则检测checkFlow(resourceWrapper, context, node, count, prioritized);// 放行fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

checkFlow方法:

void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)throws BlockException {// checker是 FlowRuleChecker 类的一个对象checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}

跟入FlowRuleChecker:

public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, ResourceWrapper resource,Context context, DefaultNode node,int count, boolean prioritized) throws BlockException {if (ruleProvider == null || resource == null) {return;}// 获取当前资源的所有限流规则Collection<FlowRule> rules = ruleProvider.apply(resource.getName());if (rules != null) {for (FlowRule rule : rules) {// 遍历,逐个规则做校验if (!canPassCheck(rule, context, node, count, prioritized)) {throw new FlowException(rule.getLimitApp(), rule);}}}}

这里的FlowRule就是限流规则接口,其中的几个成员变量,刚好对应表单参数:

public class FlowRule extends AbstractRule {/*** 阈值类型 (0: 线程, 1: QPS).*/private int grade = RuleConstant.FLOW_GRADE_QPS;/*** 阈值.*/private double count;/*** 三种限流模式.** {@link RuleConstant#STRATEGY_DIRECT} 直连模式;* {@link RuleConstant#STRATEGY_RELATE} 关联模式;* {@link RuleConstant#STRATEGY_CHAIN} 链路模式.*/private int strategy = RuleConstant.STRATEGY_DIRECT;/*** 关联模式关联的资源名称.*/private String refResource;/*** 3种流控效果.* 0. 快速失败, 1. warm up, 2. 排队等待, 3. warm up + 排队等待*/private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;// 预热时长private int warmUpPeriodSec = 10;/*** 队列最大等待时间.*/private int maxQueueingTimeMs = 500;// 。。。 略
}

校验的逻辑定义在FlowRuleCheckercanPassCheck方法中:

public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,boolean prioritized) {// 获取限流资源名称String limitApp = rule.getLimitApp();if (limitApp == null) {return true;}// 校验规则return passLocalCheck(rule, context, node, acquireCount, prioritized);
}

进入passLocalCheck()

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node,int acquireCount,  boolean prioritized) {// 基于限流模式判断要统计的节点, // 如果是直连模式,关联模式,对ClusterNode统计,如果是链路模式,则对DefaultNode统计Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);if (selectedNode == null) {return true;}// 判断规则return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
}

这里对规则的判断先要通过FlowRule#getRater()获取流量控制器TrafficShapingController,然后再做限流。

TrafficShapingController有3种实现:

在这里插入图片描述

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

最终的限流判断都在TrafficShapingController的canPass方法中。

2.9.2.滑动时间窗口

滑动时间窗口的功能分两部分来看:

  • 一是时间区间窗口的QPS计数功能,这个是在StatisticSlot中调用的
  • 二是对滑动窗口内的时间区间窗口QPS累加,这个是在FlowRule中调用的

先来看时间区间窗口的QPS计数功能。

2.9.2.1.时间窗口请求量统计

回顾2.5章节中的StatisticSlot部分,有这样一段代码:

在这里插入图片描述

就是在统计通过该节点的QPS,我们跟入看看,这里进入了DefaultNode内部:

在这里插入图片描述

发现同时对DefaultNodeClusterNode在做QPS统计,我们知道DefaultNodeClusterNode都是StatisticNode的子类,这里调用addPassRequest()方法,最终都会进入StatisticNode中。

随便跟入一个:

在这里插入图片描述

这里有秒、分两种纬度的统计,对应两个计数器。找到对应的成员变量,可以看到:

在这里插入图片描述

两个计数器都是ArrayMetric类型,并且传入了两个参数:

// intervalInMs:是滑动窗口的时间间隔,默认为 1 秒
// sampleCount: 时间窗口的分隔数量,默认为 2,就是把 1秒分为 2个小时间窗
public ArrayMetric(int sampleCount, int intervalInMs) {this.data = new OccupiableBucketLeapArray(sampleCount, intervalInMs);
}

如图:

在这里插入图片描述

接下来,我们进入ArrayMetric类的addPass方法:

@Override
public void addPass(int count) {// 获取当前时间所在的时间窗WindowWrap<MetricBucket> wrap = data.currentWindow();// 计数器 +1wrap.value().addPass(count);
}

那么,计数器如何知道当前所在的窗口是哪个呢?

这里的data是一个LeapArray:

在这里插入图片描述

LeapArray的四个属性:

public abstract class LeapArray<T> {// 小窗口的时间长度,默认是500ms ,值 = intervalInMs / sampleCountprotected int windowLengthInMs;// 滑动窗口内的 小窗口 数量,默认为 2protected int sampleCount;// 滑动窗口的时间间隔,默认为 1000msprotected int intervalInMs;// 滑动窗口的时间间隔,单位为秒,默认为 1private double intervalInSecond;
}

LeapArray是一个环形数组,因为时间是无限的,数组长度不可能无限,因此数组中每一个格子放入一个时间窗(window),当数组放满后,角标归0,覆盖最初的window。

在这里插入图片描述

因为滑动窗口最多分成sampleCount数量的小窗口,因此数组长度只要大于sampleCount,那么最近的一个滑动窗口内的2个小窗口就永远不会被覆盖,就不用担心旧数据被覆盖的问题了。

我们跟入 data.currentWindow();方法:

public WindowWrap<T> currentWindow(long timeMillis) {if (timeMillis < 0) {return null;}// 计算当前时间对应的数组角标int idx = calculateTimeIdx(timeMillis);// 计算当前时间所在窗口的开始时间.long windowStart = calculateWindowStart(timeMillis);/** 先根据角标获取数组中保存的 oldWindow 对象,可能是旧数据,需要判断.** (1) oldWindow 不存在, 说明是第一次,创建新 window并存入,然后返回即可* (2) oldWindow的 starTime = 本次请求的 windowStar, 说明正是要找的窗口,直接返回.* (3) oldWindow的 starTime < 本次请求的 windowStar, 说明是旧数据,需要被覆盖,创建 *     新窗口,覆盖旧窗口*/while (true) {WindowWrap<T> old = array.get(idx);if (old == null) {// 创建新 windowWindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));// 基于CAS写入数组,避免线程安全问题if (array.compareAndSet(idx, null, window)) {// 写入成功,返回新的 windowreturn window;} else {// 写入失败,说明有并发更新,等待其它人更新完成即可Thread.yield();}} else if (windowStart == old.windowStart()) {return old;} else if (windowStart > old.windowStart()) {if (updateLock.tryLock()) {try {// 获取并发锁,覆盖旧窗口并返回return resetWindowTo(old, windowStart);} finally {updateLock.unlock();}} else {// 获取锁失败,等待其它线程处理就可以了Thread.yield();}} else if (windowStart < old.windowStart()) {// 这种情况不应该存在,写这里只是以防万一。return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));}}
}

找到当前时间所在窗口(WindowWrap)后,只要调用WindowWrap对象中的add方法,计数器+1即可。

这里只负责统计每个窗口的请求量,不负责拦截。限流拦截要看FlowSlot中的逻辑。

2.9.2.2.滑动窗口QPS计算

在2.9.1小节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的DefaultController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {// 计算目前为止滑动窗口内已经存在的请求量int curCount = avgUsedTokens(node);// 判断:已使用请求量 + 需要的请求量(1) 是否大于 窗口的请求阈值if (curCount + acquireCount > count) {// 大于,说明超出阈值,返回falseif (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {long currentTime;long waitInMs;currentTime = TimeUtil.currentTimeMillis();waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {node.addWaitingRequest(currentTime + waitInMs, acquireCount);node.addOccupiedPass(acquireCount);sleep(waitInMs);// PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.throw new PriorityWaitException(waitInMs);}}return false;}// 小于等于,说明在阈值范围内,返回truereturn true;
}

因此,判断的关键就是int curCount = avgUsedTokens(node);

private int avgUsedTokens(Node node) {if (node == null) {return DEFAULT_AVG_USED_TOKENS;}return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
}

因为我们采用的是限流,走node.passQps()逻辑:

// 这里又进入了 StatisticNode类
@Override
public double passQps() {// 请求量 ÷ 滑动窗口时间间隔 ,得到的就是QPSreturn rollingCounterInSecond.pass() / rollingCounterInSecond.getWindowIntervalInSec();
}

那么rollingCounterInSecond.pass()是如何得到请求量的呢?

// rollingCounterInSecond 本质是ArrayMetric,之前说过
@Override
public long pass() {// 获取当前窗口data.currentWindow();long pass = 0;// 获取 当前时间的 滑动窗口范围内 的所有小窗口List<MetricBucket> list = data.values();// 遍历for (MetricBucket window : list) {// 累加求和pass += window.pass();}// 返回return pass;
}

来看看data.values()如何获取 滑动窗口范围内 的所有小窗口:

// 此处进入LeapArray类中:public List<T> values(long timeMillis) {if (timeMillis < 0) {return new ArrayList<T>();}// 创建空集合,大小等于 LeapArray长度int size = array.length();List<T> result = new ArrayList<T>(size);// 遍历 LeapArrayfor (int i = 0; i < size; i++) {// 获取每一个小窗口WindowWrap<T> windowWrap = array.get(i);// 判断这个小窗口是否在 滑动窗口时间范围内(1秒内)if (windowWrap == null || isWindowDeprecated(timeMillis, windowWrap)) {// 不在范围内,则跳过continue;}// 在范围内,则添加到集合中result.add(windowWrap.value());}// 返回集合return result;
}

那么,isWindowDeprecated(timeMillis, windowWrap)又是如何判断窗口是否符合要求呢?

public boolean isWindowDeprecated(long time, WindowWrap<T> windowWrap) {// 当前时间 - 窗口开始时间  是否大于 滑动窗口的最大间隔(1秒)// 也就是说,我们要统计的时 距离当前时间1秒内的 小窗口的 count之和return time - windowWrap.windowStart() > intervalInMs;
}

2.9.3.漏桶

上一节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的RateLimiterController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {// Pass when acquire count is less or equal than 0.if (acquireCount <= 0) {return true;}// 阈值小于等于 0 ,阻止请求if (count <= 0) {return false;}// 获取当前时间long currentTime = TimeUtil.currentTimeMillis();// 计算两次请求之间允许的最小时间间隔long costTime = Math.round(1.0 * (acquireCount) / count * 1000);// 计算本次请求 允许执行的时间点 = 最近一次请求的可执行时间 + 两次请求的最小间隔long expectedTime = costTime + latestPassedTime.get();// 如果允许执行的时间点小于当前时间,说明可以立即执行if (expectedTime <= currentTime) {// 更新上一次的请求的执行时间latestPassedTime.set(currentTime);return true;} else {// 不能立即执行,需要计算 预期等待时长// 预期等待时长 = 两次请求的最小间隔 +最近一次请求的可执行时间 - 当前时间long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();// 如果预期等待时间超出阈值,则拒绝请求if (waitTime > maxQueueingTimeMs) {return false;} else {// 预期等待时间小于阈值,更新最近一次请求的可执行时间,加上costTimelong oldTime = latestPassedTime.addAndGet(costTime);try {// 保险起见,再判断一次预期等待时间,是否超过阈值waitTime = oldTime - TimeUtil.currentTimeMillis();if (waitTime > maxQueueingTimeMs) {// 如果超过,则把刚才 加 的时间再 减回来latestPassedTime.addAndGet(-costTime);// 拒绝return false;}// in race condition waitTime may <= 0if (waitTime > 0) {// 预期等待时间在阈值范围内,休眠要等待的时间,醒来后继续执行Thread.sleep(waitTime);}return true;} catch (InterruptedException e) {}}}return false;
}

与我们之前分析的漏桶算法基本一致:

在这里插入图片描述

2.10.DegradeSlot

最后一关,就是降级规则判断了。

Sentinel的降级是基于状态机来实现的:

在这里插入图片描述

对应的实现在DegradeSlot类中,核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args) throws Throwable {// 熔断降级规则判断performChecking(context, resourceWrapper);// 继续下一个slotfireEntry(context, resourceWrapper, node, count, prioritized, args);
}

继续进入performChecking方法:

void performChecking(Context context, ResourceWrapper r) throws BlockException {// 获取当前资源上的所有的断路器 CircuitBreakerList<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());if (circuitBreakers == null || circuitBreakers.isEmpty()) {return;}for (CircuitBreaker cb : circuitBreakers) {// 遍历断路器,逐个判断if (!cb.tryPass(context)) {throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());}}
}

2.10.1.CircuitBreaker

我们进入CircuitBreaker的tryPass方法中:

@Override
public boolean tryPass(Context context) {// 判断状态机状态if (currentState.get() == State.CLOSED) {// 如果是closed状态,直接放行return true;}if (currentState.get() == State.OPEN) {// 如果是OPEN状态,断路器打开// 继续判断OPEN时间窗是否结束,如果是则把状态从OPEN切换到 HALF_OPEN,返回truereturn retryTimeoutArrived() && fromOpenToHalfOpen(context);}// OPEN状态,并且时间窗未到,返回falsereturn false;
}

有关时间窗的判断在retryTimeoutArrived()方法:

protected boolean retryTimeoutArrived() {// 当前时间 大于 下一次 HalfOpen的重试时间return TimeUtil.currentTimeMillis() >= nextRetryTimestamp;
}

OPEN到HALF_OPEN切换在fromOpenToHalfOpen(context)方法:

protected boolean fromOpenToHalfOpen(Context context) {// 基于CAS修改状态,从 OPEN到 HALF_OPENif (currentState.compareAndSet(State.OPEN, State.HALF_OPEN)) {// 状态变更的事件通知notifyObservers(State.OPEN, State.HALF_OPEN, null);// 得到当前资源Entry entry = context.getCurEntry();// 给资源设置监听器,在资源Entry销毁时(资源业务执行完毕时)触发entry.whenTerminate(new BiConsumer<Context, Entry>() {@Overridepublic void accept(Context context, Entry entry) {// 判断 资源业务是否异常if (entry.getBlockError() != null) {// 如果异常,则再次进入OPEN状态currentState.compareAndSet(State.HALF_OPEN, State.OPEN);notifyObservers(State.HALF_OPEN, State.OPEN, 1.0d);}}});return true;}return false;
}

这里出现了从OPEN到HALF_OPEN、从HALF_OPEN到OPEN的变化,但是还有几个没有:

  • 从CLOSED到OPEN
  • 从HALF_OPEN到CLOSED

2.10.2.触发断路器

请求经过所有插槽 后,一定会执行exit方法,而在DegradeSlot的exit方法中:

在这里插入图片描述

会调用CircuitBreaker的onRequestComplete方法。而CircuitBreaker有两个实现:

在这里插入图片描述

我们这里以异常比例熔断为例来看,进入ExceptionCircuitBreakeronRequestComplete方法:

@Override
public void onRequestComplete(Context context) {// 获取资源 EntryEntry entry = context.getCurEntry();if (entry == null) {return;}// 尝试获取 资源中的 异常Throwable error = entry.getError();// 获取计数器,同样采用了滑动窗口来计数SimpleErrorCounter counter = stat.currentWindow().value();if (error != null) {// 如果出现异常,则 error计数器 +1counter.getErrorCount().add(1);}// 不管是否出现异常,total计数器 +1counter.getTotalCount().add(1);// 判断异常比例是否超出阈值handleStateChangeWhenThresholdExceeded(error);
}

来看阈值判断的方法:

private void handleStateChangeWhenThresholdExceeded(Throwable error) {// 如果当前已经是OPEN状态,不做处理if (currentState.get() == State.OPEN) {return;}// 如果已经是 HALF_OPEN 状态,判断是否需求切换状态if (currentState.get() == State.HALF_OPEN) {if (error == null) {// 没有异常,则从 HALF_OPEN 到 CLOSEDfromHalfOpenToClose();} else {// 有一次,再次进入OPENfromHalfOpenToOpen(1.0d);}return;}// 说明当前是CLOSE状态,需要判断是否触发阈值List<SimpleErrorCounter> counters = stat.values();long errCount = 0;long totalCount = 0;// 累加计算 异常请求数量、总请求数量for (SimpleErrorCounter counter : counters) {errCount += counter.errorCount.sum();totalCount += counter.totalCount.sum();}// 如果总请求数量未达到阈值,什么都不做if (totalCount < minRequestAmount) {return;}double curCount = errCount;if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {// 计算请求的异常比例curCount = errCount * 1.0d / totalCount;}// 如果比例超过阈值,切换到 OPENif (curCount > threshold) {transformToOpen(curCount);}
}

这篇关于黑马-Cloud21版-面试篇13:Sentinel源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129513

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S