netcore高级知识点,内存对齐,原理与示例

2024-09-02 07:36

本文主要是介绍netcore高级知识点,内存对齐,原理与示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近几年一直从事物联网开发,与硬件打交道越来越多,发现越接近底层开发对性能的追求越高,毕竟硬件资源相对上层应用来实在是太缺乏了。今天想和大家一起分享关于C#中的内存对齐,希望通过理解和优化内存对齐,可以帮助大家更好的提高程序性能以及资源利用效率。

01什么是内存对齐

内存对齐指把数据存储在内存中时,需要按照某种特定规则进行存储,使其内存存储在符合特定边界要求的内存地址上。而内存对齐主要目的则是减少CPU内存操作次数,提高内存操作效率,并提升CPU缓存命中率,从而提升整体性能。

02内存对齐原则

内存对齐原则包含两部分:内存对齐边界和内存对齐规则。

① 内存对齐边界:数据存储在内存中的起始内存地址必须满足条件。例如,8字节对齐则要求数据的起始内存地址必须是8的倍数;
② 内存对齐规则:不同的硬件平台内存对齐规则也各有差异,比如:x86、x64架构在内存对齐方面比较宽松,而ARM、RISC-V架构则相对比较严格;一般32位处理器要求4字节对齐,而64位处理器要求8字节对齐;

因此不同的CPU架构和平台则内存对齐规则也各有不同,而这些差异也都是为了使数据在内存中的布局更加符合CPU操作方式,从而提高程序执行效率。

03C#中的内存对齐

1、“托管代码”和“非托管代码”

托管代码:执行过程交给运行时CLR管理的代码,运行时CLR负责提取托管代码并编译成机器代码最后执行,同时运行时CLR还负责自动内存管理、安全边界和类型安全等重要服务。

“非托管代码”:即不被运行时CLR管理的代码,比如运行C/C++语言编写的代码,而此时开发任意就需要亲自处理很多事情,比如内存管理、垃圾回收、安全问题等等。

因此一般对于托管代码来说,内存的分配以及对齐策略都被运行时CLR一手包办了,无需我们过多关注,而如果需要通过P/Invoke和COM互操作来调用非托管代码则需要开发者自己处理内存对齐策略了。

当然也不是说纯托管代码就没有对内存对齐操作空间了,只是相对来说与非托管代码交互时使用内存对齐操作空间更大。

2、StructLayoutAttribute特性

无论托管内存还是非托管内存,都可以用StructLayoutAttribute特性来对其进行内存布局控制,简单来说对于托管代码可以使用LayoutKind枚举值Explicit进行显示控制,而对于非托管代码LayoutKind枚举值都可以控制。

04示例-字段顺序影响内存占用大小

我们用StructLayout(LayoutKind.Sequential标记OriginalLayout结构体,看看每个字段的布局情况及其与占用内存总大小之间的关系,先来看下面一段代码:

using System.Runtime.InteropServices;
namespace CSharp
{public class MemoryLayout{[StructLayout(LayoutKind.Sequential)]public struct OriginalLayout{public long LongField1;public short ShortField;public byte ByteField1;}public static void Run(){Console.WriteLine($"OriginalLayout LongField1 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "LongField1")} ");Console.WriteLine($"OriginalLayout ShortField 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "ShortField")} ");Console.WriteLine($"OriginalLayout ByteField1 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "ByteField1")} ");Console.WriteLine($"OriginalLayout 总大小: {Marshal.SizeOf(typeof(OriginalLayout))} bytes");Console.ReadKey();}}
}

我们使用Marshal.OffsetOf计算每个字段偏移量,即第一个字段偏移量表示其内存地址为0,则第二个字段偏移量表示为其相对第一个字段内存地址值的相对值,使用Marshal.SizeOf计算类型所占内存总大小。
如下图是上面代码运行结果:
在这里插入图片描述
首先说下long类型为8字节、short类型为2字节、byte类型为1字节,再来详细说下每个值怎么来的。

首先因为LongField1是第一个字段所以为0,并且因为long类型为8字节,所以LongField1使用了0-7内存地址段,所有第二个字段ShortField偏移量为8,因此ShortField使用了8-9内存地址段,所以第三个字段ByteField1偏移量为10。

那为什么总大小不是8+2+1=11字节,而16字节呢?这是因为对于类型的对齐方式默认会以其最大的元素对齐方式为准,并且整个类型大小是最大元素大小的整数倍,因此这里的总大小是8的倍数,因为2+1并没有占满8字节,因此ByteField1后面被自动填充了5个字节,以此达到对齐要求。所以最后就是8+2+1+5(自动填充)=16字节。

然后我们把LongField1和ShortField两个字段调整一下位置,再来看看运行结果:

public class MemoryLayout
{[StructLayout(LayoutKind.Sequential)]public struct OriginalLayout{public short ShortField;public long LongField1;public byte ByteField1;}public static void Run(){Console.WriteLine($"OriginalLayout ShortField 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "ShortField")} ");Console.WriteLine($"OriginalLayout LongField1 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "LongField1")} ");Console.WriteLine($"OriginalLayout ByteField1 偏移量: {Marshal.OffsetOf(typeof(OriginalLayout), "ByteField1")} ");Console.WriteLine($"OriginalLayout 总大小: {Marshal.SizeOf(typeof(OriginalLayout))} bytes");Console.ReadKey();}
}

在这里插入图片描述

这里为什么又是24字节呢?

首先虽然ShortField只占了2字节,使用了0-1内存地址段,但是LongField1并不能从2内存地址值开始排版,因为每个字段必须与其自身大小的字段或类型的对齐方式对齐,也就是说LongField1占8字节,那么其内存地址起始值也要是8的整数倍,因此LongFiled1使用了8-15内存地址段,而ShortField和LongFiled1之间会被自动填充6个字节,同样的ByteField1后面也被自动填充7个字节,因此总大小为24字节。

这里只是举了个小例子来展示字段顺序不同,对最终类型所占内存总大小的,这也给我们设计低内存消耗程序设计提供了空间。

当然这里只是简单使用了StructLayout,还Pack属性,以及Explicit和FieldOffset,还有CharSet、MarshalAs等复杂的功能都没有介绍,有兴趣的可以深入研究研究。本文只是简单内存对齐的原理原则以及简单的内存优化,后面有机会再给大家深入介绍。

这篇关于netcore高级知识点,内存对齐,原理与示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129381

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制