机器视觉开源处理库汇总-介绍n款计算机视觉库/人脸识别开源库/软件 -几种图像处理类库的比较-视觉相关网站

本文主要是介绍机器视觉开源处理库汇总-介绍n款计算机视觉库/人脸识别开源库/软件 -几种图像处理类库的比较-视觉相关网站,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器视觉开源处理库汇总-介绍n款计算机视觉库/人脸识别开源库/软件 -几种图像处理类库的比较-视觉相关网站

机器视觉开源处理库汇总


从cvchina搞到的机器视觉开源处理库汇总,转来了,很给力,还在不断更新。。。

通用库/General Library

  • OpenCV

无需多言。

  • RAVL

Recognition And Vision Library. 线程安全。强大的IO机制。包含AAM。

  • CImg

很酷的一个图像处理包。整个库只有一个头文件。包含一个基于PDE的光流算法。

图像,视频IO/Image, Video IO

  • FreeImage
  • DevIL
  • ImageMagick
  • FFMPEG
  • VideoInput
  • portVideo

AR相关/Augmented Reality

  • ARToolKit

基于Marker的AR库

  • ARToolKitPlus

ARToolKit的增强版。实现了更好的姿态估计算法。

  • PTAM

实时的跟踪、SLAM、AR库。无需Marker,模板,内置传感器等。

  • BazAR

基于特征点检测和识别的AR库。

局部不变特征/Local Invariant Feature

  • VLFeat

目前最好的Sift开源实现。同时包含了KD-tree,KD-Forest,BoW实现。

  • Ferns

基于Naive BayesianBundle的特征点识别。高速,但占用内存高。

  • SIFT By Rob Hess

基于OpenCV的Sift实现。

目标检测/Object Detection

  • AdaBoost By JianXin.Wu

又一个AdaBoost实现。训练速度快。

  • 行人检测 By JianXin.Wu

基于Centrist和Linear SVM的快速行人检测。

(近似)最近邻/ANN

  • FLANN

目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。

  • ANN

另外一个近似最近邻库。

SLAM & SFM

  • SceneLib[LGPL]

monoSLAM库。由Androw Davison开发。

图像分割/Segmentation

  • SLIC Super Pixel

使用Simple Linear Iterative Clustering产生指定数目,近似均匀分布的Super Pixel。

目标跟踪/Tracking

  • TLD

基于Online Random Forest的目标跟踪算法。

  • KLT

Kanade-Lucas-Tracker

  • Online boosting trackers

Online Boosting Trackers

直线检测/Line Detection

  • DSCC

基于联通域连接的直线检测算法。

  • LSD[GPL]

基于梯度的,局部直线段检测算子。

指纹/Finger Print

  • pHash[GPL]

基于感知的多媒体文件Hash算法。(提取,对比图像、视频、音频的指纹)

视觉显著性/Visual Salience

  • Global Contrast Based Salient Region Detection

Ming-Ming Cheng的视觉显著性算法。

FFT/DWT

  • FFTW[GPL]

最快,最好的开源FFT。

  • FFTReal[WTFPL]

轻量级的FFT实现。许可证是亮点。

音频处理/Audio processing

  • STK[Free]

音频处理,音频合成。

  • libsndfile[LGPL]

音频文件IO。

  • libsamplerate[GPL]

音频重采样。

小波变换

快速小波变换(FWT)

  • FWT

BRIEF: Binary Robust Independent Elementary Feature 一个很好的局部特征描述子,里面有FAST corner + BRIEF实现特征点匹配的DEMO:http://cvlab.epfl.ch/software/brief/

http://code.google.com/p/javacv


Java打包的OpenCV, FFmpeg, libdc1394, PGR FlyCapture, OpenKinect, videoInput, and ARToolKitPlus库。可以放在Android上用~

libHIK,HIK SVM,计算HIK SVM跟Centrist的Lib。http://c2inet.sce.ntu.edu.sg/Jianxin/projects/libHIK/libHIK.htm

一组视觉显著性检测代码的链接:http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/



介绍n款计算机视觉库/人脸识别开源库/软件

计算机视觉库OpenCV

OpenCV是Intel®开源计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV 拥有包括 300 多个C函数的跨平台的中、高层 API。它不依赖于其它的外部库——尽管也可以使用某些外部库。 OpenCV 对非商业...

人脸识别faceservice.cgi

faceservice.cgi 是一个用来进行人脸识别的 CGI 程序, 你可以通过上传图像,然后该程序即告诉你人脸的大概坐标位置。faceservice是采用 OpenCV 库进行开发的。

OpenCV的.NET版OpenCVDotNet

OpenCVDotNet 是一个 .NET 对 OpenCV 包的封装。

人脸检测算法jViolajones

jViolajones是人脸检测算法Viola-Jones的一个Java实现,并能够加载OpenCV XML文件。 示例代码:http://www.oschina.net/code/snippet_12_2033

Java视觉处理库JavaCV

JavaCV 提供了在计算机视觉领域的封装库,包括:OpenCV、ARToolKitPlus、libdc1394 2.x 、PGR FlyCapture和FFmpeg。此外,该工具可以很容易地使用Java平台的功能。 JavaCV还带有硬件加速的全屏幕图像显示(CanvasFrame),易于在多个内核中执行并行代码(并...

运动检测程序QMotion

QMotion 是一个采用 OpenCV 开发的运动检测程序,基于 QT。

视频监控系统OpenVSS

OpenVSS - 开放平台的视频监控系统 - 是一个系统级别的视频监控软件视频分析框架(VAF)的视频分析与检索和播放服务,记录和索引技术。它被设计成插件式的支持多摄像头平台,多分析仪模块(OpenCV的集成),以及多核心架构。

手势识别hand-gesture-detection

手势识别,用OpenCV实现

人脸检测识别mcvai-tracking

提供人脸检测、识别与检测特定人脸的功能,示例代码 cvReleaseImage( &gray ); cvReleaseMemStorage(&storage); cvReleaseHaarClassifierCascade(&cascade);...

人脸检测与跟踪库asmlibrary

Active Shape Model Library (ASMLibrary©) SDK, 用OpenCV开发,用于人脸检测与跟踪。

Lua视觉开发库libecv

ECV 是 lua 的计算机视觉开发库(目前只提供linux支持)

OpenCV的.Net封装OpenCVSharp

OpenCVSharp 是一个OpenCV的.Net wrapper,应用最新的OpenCV库开发,使用习惯比EmguCV更接近原始的OpenCV,有详细的使用样例供参考。

3D视觉库fvision2010

基于OpenCV构建的图像处理和3D视觉库。 示例代码: ImageSequenceReaderFactory factory; ImageSequenceReader* reader = factory.pathRegex("c:/a/im_%03d.jpg", 0, 20); //ImageSequenceReader* reader = factory.avi("a.avi"); if (reader == NULL) { ...

基于QT的计算机视觉库QVision

基于 QT 的面向对象的多平台计算机视觉库。可以方便的创建图形化应用程序,算法库主要从 OpenCV,GSL,CGAL,IPP,Octave 等高性能库借鉴而来。

图像特征提取cvBlob

cvBlob 是计算机视觉应用中在二值图像里寻找连通域的库.能够执行连通域分析与特征提取.

实时图像/视频处理滤波开发包GShow

GShow is a real-time image/video processing filter development kit. It successfully integrates DirectX11 with DirectShow framework. So it has the following features: GShow 是实时 图像/视频 处理滤波开发包,集成DiretX11。...

视频捕获 APIVideoMan

VideoMan 提供一组视频捕获 API 。支持多种视频流同时输入(视频传输线、USB摄像头和视频文件等)。能利用 OpenGL 对输入进行处理,方便的与 OpenCV,CUDA 等集成开发计算机视觉系统。

开放模式识别项目OpenPR

Pattern Recognition project(开放模式识别项目),致力于开发出一套包含图像处理、计算机视觉、自然语言处理、模式识别、机器学习和相关领域算法的函数库。

OpenCV的Python封装pyopencv

OpenCV的Python封装,主要特性包括: 提供与OpenCV 2.x中最新的C++接口极为相似的Python接口,并且包括C++中不包括的C接口 提供对OpenCV 2.x中所有主要部件的绑定:CxCORE (almost complete), CxFLANN (complete), Cv (complete), CvAux (C++ part almost...

视觉快速开发平台qcv

计算机视觉快速开发平台,提供测试框架,使开发者可以专注于算法研究。

图像捕获libv4l2cam

对函数库v412的封装,从网络摄像头等硬件获得图像数据,支持YUYV裸数据输出和BGR24的OpenCVIplImage输出

计算机视觉算法OpenVIDIA

OpenVIDIA projects implement computer vision algorithms running on on graphics hardware such as single or multiple graphics processing units(GPUs) using OpenGL, Cg and CUDA-C. Some samples will soon support OpenCL and Direct Compute API'...

高斯模型点集配准算法gmmreg

实现了基于混合高斯模型的点集配准算法,该算法描述在论文: A Robust Algorithm for Point Set Registration Using Mixture of Gaussians, Bing Jian and Baba C. Vemuri. ,实现了C++/Matlab/Python接口...

模式识别和视觉库RAVL

Recognition And Vision Library (RAVL) 是一个通用 C++ 库,包含计算机视觉、模式识别等模块。

图像处理和计算机视觉常用算法库LTI-Lib

LTI-Lib 是一个包含图像处理和计算机视觉常用算法和数据结构的面向对象库,提供 Windows 下的 VC 版本和 Linux 下的 gcc 版本,主要包含以下几方面内容: 1、线性代数 2、聚类分析 3、图像处理 4、可视化和绘图工具

OpenCV优化opencv-dsp-acceleration

优化了OpenCV库在DSP上的速度。

C++计算机视觉库Integrating Vision Toolkit

Integrating Vision Toolkit (IVT) 是一个强大而迅速的C++计算机视觉库,拥有易用的接口和面向对象的架构,并且含有自己的一套跨平台GUI组件,另外可以选择集成OpenCV

计算机视觉和机器人技术的工具包EGT

The Epipolar Geometry Toolbox (EGT) is a toolbox designed for Matlab (by Mathworks Inc.). EGT provides a wide set of functions to approach computer vision and robotics problems with single and multiple views, and with different vision se...

OpenCV的扩展库ImageNets

ImageNets 是对OpenCV 的扩展,提供对机器人视觉算法方面友好的支持,使用Nokia的QT编写界面。

libvideogfx

视频处理、计算机视觉和计算机图形学的快速开发库。

Matlab计算机视觉包mVision

Matlab 的计算机视觉包,包含用于观察结果的 GUI 组件,貌似也停止开发了,拿来做学习用挺不错的。

Scilab的计算机视觉库SIP

SIP 是 Scilab(一种免费的类Matlab编程环境)的图像处理和计算机视觉库。SIP 可以读写 JPEG/PNG/BMP 格式的图片。具备图像滤波、分割、边缘检测、形态学处理和形状分析等功能。

STAIR Vision Library

STAIR Vision Library (SVL) 最初是为支持斯坦福智能机器人设计的,提供对计算机视觉、机器学习和概率统计模


几种图像处理类库的比较

作者:王先荣

原文;http://www.cnblogs.com/xrwang/archive/2010/01/26/TheComparisonOfImageProcessingLibraries.html

前言

近期需要做一些图像处理方面的学习和研究,首要任务就是选择一套合适的图像处理类库。目前较知名且功能完善的图像处理类库有OpenCv、EmguCv、AForge.net等等。本文将从许可协议、下载、安装、文档资料、易用性、性能等方面对这些类库进行比较,然后给出选择建议,当然也包括我自己的选择。

许可协议

类库许可协议许可协议网址大致介绍
OpenCvBSDwww.opensource.org/licenses/bsd-license.html在保留原来BSD协议声明的前提下,随便怎么用都行
EmguCvGPL v3http://www.gnu.org/licenses/gpl-3.0.txt你的产品必须也使用GPL协议,开源且免费
商业授权http://www.emgu.com/wiki/files/CommercialLicense.txt给钱之后可以用于闭源的商业产品
AForge.netLGPL v3http://www.gnu.org/licenses/lgpl.html如果不修改类库源代码,引用该类库的产品可以闭源和(或)收费

以上三种类库都可以用于开发商业产品,但是EmguCv需要付费;因为我只是用来学习和研究,所以这些许可协议对我无所谓。不过鉴于我们身在中国,如果脸皮厚点,去他丫的许可协议。

下载

可以很方便的下载到这些类库,下载地址分别为:

类库

下载地址

OpenCv

http://sourceforge.net/projects/opencvlibrary/files/

EmguCv

http://www.emgu.com/wiki/index.php/Download_And_Installation

AForge.net

http://www.aforgenet.com/framework/downloads.html

安装

这些类库的安装都比较简单,直接运行安装程序,并点“下一步”即可完成。但是OpenCv在安装完之后还需要一些额外的处理才能在VS2008里面使用,在http://www.opencv.org.cn有一篇名为《VC2008 Express下安装OpenCv 2.0》的文章专门介绍了如何安装OpenCv。

类库

安装难易度

备注

OpenCv

比较容易

VC下使用需要重新编译

EmguCv

容易

AForge.net

容易

相信看这篇文章的人都不会被安装困扰。

文档资料

类库

总体评价

书籍

网站

文档

示例

社区

备注

OpenCv

中等

中英文

中英文

中英文

较多

中文论坛

有中文资料但不完整

EmguCv

英文

英文

英文论坛

论坛人气很差

AForge.net

英文

英文

英文论坛

论坛人气很差

OpenCv有一些中文资料,另外两种的资料全是英文的;不过EmguCv建立在OpenCv的基础上,大部分OpenCv的资料可以用于EmguCv;而AForge.net是原生的.net类库,对GDI+有很多扩展,一些MSDN的资料可以借鉴。如果在查词典的基础上还看不懂英文文档,基本上可以放弃使用这些类库了。

易用性

易用性这玩意,主观意志和个人能力对它影响很大,下面是我的看法:

类库

易用性

备注

OpenCv

比较差

OpenCv大多数功能都以C风格函数形式提供,少部分功能以C++类提供。注意:2.0版将更多的功能封装成类了。

EmguCv

比较好

将OpenCv的绝大部分功能都包装成了.net类、结构或者枚举。不过文档不全,还是得对照OpenCv的文档去看才行。

AForge.net

纯.net类库,用起来很方便。

最近几年一直用的是C#,把C和C++忘记得差不多了,况且本来C/C++我就不太熟,所以对OpenCv的看法恐怕有偏见。


视觉相关网站


这段时间因为项目的需要,我一直在折腾计算机视觉,尤其是双目立体视觉,代码、论文、工具箱等……占用了我几乎90%的工作时间,还在一点点地摸索,但进度实在不敢恭维,稍后我会把情况作个总结。

今天的主要任务就是和大家分享一些鄙人收藏的认为相当研究价值的网页:

Oxford大牛:Andrew Zisserman,http://www.robots.ox.ac.uk/~vgg/hzbook/code/,此人主要研究多幅图像的几何学,该网站提供了部分工具,相当实用,还有例子

西澳大利亚大学的Peter Kovesi:http://www.csse.uwa.edu.au/~pk/research/matlabfns/,提供了一些基本的matlab工具,主要内容涉及Computer Vision, Image Processing

CMU:http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html,该网站是我的最爱,尤其后面这个地址http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-groups.html,在这里提供了世界各地机构、大学在Computer Vision所涉及各领域的研究情况,包括Image Processing, Machine Vision,我后来也是通过它连接到了很多国外的网站

Cambridge:http://mi.eng.cam.ac.uk/milab.html,这是剑桥大学的机器智能实验室,里面有三个小组,Computer Vision & Robotics, Machine Intelligence, Speech,目前为止,Computer Vision & Robotics的一些研究成果对我日后的帮助可能会比较大,所以在此提及

大量计算机视觉方面的原版电子书:http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm,我今天先下了本Zisserman的书,呵呵,国外的原版书,虽然都是比较老的,但是对于基础的理解学习还是很有帮助的,至于目前的研究现状只能通过论文或者一些研究小组的网站

stanford:http://ai.stanford.edu/~asaxena/reconstruction3d/,这个网站是Andrew N.G老师和一个印度阿三的博士一起维护的,主要对于单张照片的三维重建,尤其他有个网页make3d.stanford.edu可以让你自己上传你的照片,通过网站来重建三维模型,这个网站对于刚开始接触Computer Vision的我来说,如获至宝,但有个致命问题就是make3d已经无法注册,我也多次给Andrew和印度阿三email,至今未回,郁闷,要是有这个网站的帐号,那还是相当爽的,不知道是不是由于他们的邮箱把我的email当成垃圾邮件过滤,哎,但这个stanford网站的贡献主要是代码,有很多computer vision的基础工具,貌似40M左右,全都是基于matlab的

caltech:http://www.vision.caltech.edu/bouguetj/calib_doc/,这是我们Computer Vision老师课件上的连接,主要是用于摄像机标定的工具集,当然也有涉及对标定图像三维重建的前期处理过程

JP Tarel:http://perso.lcpc.fr/tarel.jean-philippe/,这是他的个人主页,也是目前为止我发的email中,唯一一个给我回信的老外,因为我需要重建练习的正是他的图片集,我读过他的论文,但没有涉及代码的内容,再加上又是94年以前的论文,很多相关的引文,我都无法下载,在我的再三追问下,Tarel教授只告诉我,你可以按照我的那篇论文对足球进行重建,可是...你知道吗,你有很多图像处理的引文都下不了了,我只知道你通过那篇文章做了图像的预处理,根本不知道具体过程,当然我有幸找到过一篇90左右的论文,讲的是region-based segmentation,可是这文章里所有引文又是找不到的....悲剧的人生

开源软件网站:www.sourceforge.net

最后就是我们工大的Computer Vision大牛:sychen.com,我们Computer Vision课的老师,谦虚、低调,很有学者风范

总结:目前为止,我的个人感觉就是国外学者的论文包括刊登的资料大部分都是对原理进行的说明,并不是很在意具体的代码实现的讲解,而我却过分的关注于代码的实现,忽视Computer Vision的原理,国外学者对与自己相关领域的研究现状了解相当充分,对自己的工作进度更新也很勤快,很多好的网站我并没有完全列出来,在这里只是提了主要的几个,在这方面,我们国内的研究氛围有所不及,当然我选择的一些网站可能更多的是个人小组的研究介绍,不像一些专门从事领域研究的机构,会有那么多的权威资料,国外的网站有个很好的地方,就是有很多的免费资源,免费的matlab或者openCV工具集,免费的论文下载,课件下载等等,在这方面国内对于研究资源的共享,做得又有所差距,同样,国外的研究工具很多样,主要是matlab,一些发布的demo都使用C++写的,不过今天看到一个西班牙的研究机构(university of las palmas)用了个XMW的软件平台来实现图片的三维重建,data用的是人脸,而且国外的很多源代码基本上是在linux平台下完成的,对于我来说又是不方便,哎,可能要考虑装VM Ware了,不然双系统太累.....

目前,Computer Vision是全世界范围内自动化、计算机、数学领域的研究热点,综合性高,应用于医疗、军事、民用等等领域,其中有突出成绩的还是一下几所学校(个人见解):Cambridge(UK), Oxford(UK), CMU(US),Stanford(US),MIT(US),U.C.Berkeley(US),而UK的两所老牌高校,他们的实际应用领域丝毫不逊于stanford和CMU....

世界就是这样,当你不断的接触,不断的扩展你所能够及的边际就会发现自己越来越无知,还有很多很多不知道,发现还有很多自己都想不到但却已经实现的东西.....

革命远未成功,同志仍须努力,在CV的道路上前进.......

该文转自http://www.cnblogs.com/yangwei86/archive/2009/07/10/1520215.html


转自:http://ajian005.iteye.com/blog/1757773

这篇关于机器视觉开源处理库汇总-介绍n款计算机视觉库/人脸识别开源库/软件 -几种图像处理类库的比较-视觉相关网站的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129210

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss